

CKM Physics and CPV in b decays at LHCb

Steve Blusk, Syracuse University on behalf of the LHCb Collaboration

Snowmass, Oct. 2, 2020

Introduction

LHCb is a GPD

G Focus on discovering **NP in b,c decays**, **but breadth of physics is staggering**.

- \Box Made possible by highly flexible trigger, excellent SV capabilities & PID (p, K, $\pi \mu$, e).
- □ Key strengths will be maintained (or improved) in Run 3 & Run 4 (2021 2030)

CKM Physics

0.3 0.2

0.1

0.0

-0.2

0.0

0.2

CKM matrix due to non-diagonal Higgs-quark Yukawa matrices.

Precision test of this paradigm is a core goal of flavor physics. Are 4 CKM parameters sufficient to describe all CC interactions, or are additional phases (NP) needed?

□ If CKM paradigm is correct, the apex must be the same in tree & loop-level processes.

Measurements of γ from LHCb

Measure interference between two amplitudes that are of the same magnitude, but have different weak and strong phases

Many other modes analyzed

□ D modes: $K_S K^+ \pi^-, K^+ \pi^+ \pi^- \pi^+, K^- \pi^+ \pi^0$ □ B: $B^0 \rightarrow D K^- \pi^+, B^- \rightarrow D K^- \pi^+ \pi^-$ □ B^0_S : $B^0_S \rightarrow D K^- K^+$ □ Λ^0_b : $\Lambda^0_b \rightarrow D p K^-$ Other modes $\Box B_S^0 \rightarrow D_s^+ K^- \pi^+ \pi^-, B_S^0 \rightarrow D_s^{*+} K^-$

LHCb, Nature Physics 11 (2015) 743

 \Box Exploit large samples of $\Lambda_{\rm b}$ baryons produced in LHCb.

 V_{ub} / V_{cb}

R_{FF} is the ratio of form factors,

from LQCD, $R_{FF} = 0.68 \pm 0.07$

35

40

45

 $|V_{cb}| \times 10^3$

 $\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)} R_{\rm FF}$

 $B^{-} \rightarrow \rho^{0} \mu^{-} \nu$, and $B(B_{c} \rightarrow D^{0} \mu \nu)$

CP Violation in Loops: ϕ_s

Mixing asymmetry: A_{sl}

- M_{12} : Off-shell contribution (top quark loop) Γ_{12} : On-shell contributions (e.g. $b \rightarrow c\bar{c}s$)
- □ The interference between M_{12} and Γ_{12} gives CP violation in the mixing.
- \Box Isolate by choosing a flavor-specific final state \rightarrow SL decays

$$\begin{aligned} a_{sl}^{q} &= \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})} \approx \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan \phi_{12}^{q} \qquad \phi_{12}^{q} = \arg\left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right) \\ &\frac{N(D_{q}^{-}\mu^{+}) - N(D_{q}^{+}\mu^{-})}{N(D_{q}^{-}\mu^{+}) + N(D_{q}^{+}\mu^{-})} = \frac{a_{fs}}{2} + \left(\frac{a_{fs}}{2} - a_{prod}\right) \frac{\int_{0}^{\infty} dt \, e^{-\Gamma t} \cos(\Delta m t)}{\int_{0}^{\infty} dt \, e^{-\Gamma t} \cosh(\frac{1}{2}\Delta\Gamma t)} \\ & \circ \quad \mathbf{B}_{s}: (\Delta m_{s} \approx 18 \text{ ps}^{-1}) >> (\Gamma_{s} \approx 0.7 \text{ ps}^{-1}) \\ & \rightarrow \text{ can neglect this term} \\ & \circ \quad \mathbf{B}_{d}: (\Delta m_{d} \approx 0.5 \text{ ps}^{-1}) \approx (\Gamma_{d} \approx 0.7 \text{ ps}^{-1}) \\ & \rightarrow \text{ cannot neglect this term,} \\ & \text{ must fit decay time spectrum} \end{aligned}$$

9

Baryon number violation

BNV is a key ingredient to account for the matter-antimatter asymmetry of the Universe.

□ Certain NP six-fermion operators can generate BNV w/o affecting the nucleon lifetimes.

 \Box Such operators could generate Ξ_b^0 oscillations.

 \Box Idea: Look for WS $\Xi_{\rm b}^{0}$ decays in tagged $\Xi_{\rm b}^{(\prime,*)-} \rightarrow \Xi_{\rm b}^{0} \pi^{-}$ decays LHCb, PRL 119 (2017) 181807 Entries / 0.5 MeV/c² 140 E \Box ~450 $\Xi_h^{(\prime,*)-}$ signal in LHCb $R(t) \equiv \frac{P_{X \to \overline{X}}(t)}{P_{X \to X}(t)} = \tan^2(t/\tau_{\rm mix}) \simeq \frac{t^2}{\tau_{\rm mix}^2} \equiv (\omega t)^2$ 120 E 3 fb⁻¹ at \sqrt{s} =7, 8 TeV 100 F 80 F δm [MeV] 60 F **OS:** $Q(p) = -Q(\pi_c)$ + OS \Box Estimate \approx **40K** (**400K**) π^{-} 40 SS in 30 (300) fb⁻¹ at 20 \sqrt{s} = 13 or 14 TeV 20 40 $\delta m \, [\text{MeV}/c^2]$ Signal yield / 1 ps Signal yield / 1 ps LHCb LHCb 140 E 120 OS data **SS**: $Q(p) = Q(\pi_s)$ SS data π^{-} SS data (b) = 0.08 ps-1.6-20t [ps] t [ps] \Box No evidence of BNV, $\omega < 0.08 \text{ ps}^{-1}$ ($\tau_{\text{mix}} > 13 \text{ ps}$) at 95% CL 10 **Constrains certain NP operators giving rise to BNV**

Summary

□ The LHCb upgrade will probe for NP in b,c decays to an unprecedented precision.

□ Due to the flexible (fully software) trigger, we will be able to quickly adjust to new information that may come along.

LHCb-PUB-2018-009: Physics Case for an LHCb Upgrade II

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
$R_{K^*} \ (1 < q^2 < 6 \text{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08, 0.06, 0.18		0.02, 0.02, 0.05	-
CKM tests					
γ , with $B^0_* \to D^+_* K^-$	$\binom{+17}{22}^{\circ}$ [136]	4°	-	1°	-
γ. all modes	$(^{+5.0}_{-5.0})^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [609]	0.011	0.005	0.003	-
ϕ_s , with $B^0_s \to J/\psi\phi$	49 mrad [44]	14 mrad	_	4 mrad	22 mrad [610]
ϕ_s , with $B^0_s \to D^+_s D^s$	170 mrad [49]	35 mrad	-	9 mrad	-
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad		11 mrad	Under study [611]
a_{el}^s	33×10^{-4} [211]	10×10^{-4}	-	3×10^{-4}	-
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_s, B^0 \rightarrow \mu^+ \mu^-$					
$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_* \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [612]
$T_{B^0 \rightarrow u^+ u^-}$	22% [264]	8%	-	2%	
$S_{\mu\mu}$	-	_	-	0.2	-
$b \to c \ell^- \bar{\nu_l} \text{ LUV studies}$					
$R(D^*)$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071		0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	$5.4 imes10^{-4}$	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	1.0×10^{-5}	-
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$	-
$x \sin \phi$ from multibody decays	-	$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi)$ 1.2 × 10 ⁻⁴	$(K3\pi) 8.0 \times 10^{-6}$	

Ultra-precise test of the CKM paradigm: **Does** $(\rho,\eta)_{\text{Tree}} = (\rho,\eta)_{\text{Loop}}$?