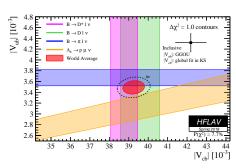
$Prospects \ for \ |V_{xb}| \ from \ joint \ experiment+theory \ fits$

 $\verb|LOI:RF/SNOWMASS21-RF1_RF0-TF5_TF6-CompF2_CompF0_Vaquero-116|\\$

Biplab Dey, Carleton DeTar, Andreas Kronfeld, Alejandro Vaquero

Snowmass'21 RPF meeting October 2^{nd} , 2020


Biplab Dev

1 / 11

The $|V_{ub}|$ - $|V_{cb}|$ saga: tree vs. penguin

• $|V_{ub}|/|V_{cb}|$ (tree) is \propto side opposite to β (loops) in the UT.

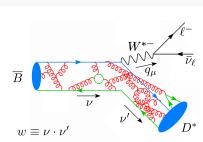
- $ullet \sim 3\sigma$ tension between inclusive/exclusive $|V_{ub}|$ - $|V_{cb}|$.
- WA of β prefers inclusive $|V_{cb}|$ and exclusive $|V_{ub}|$.

2 / 11

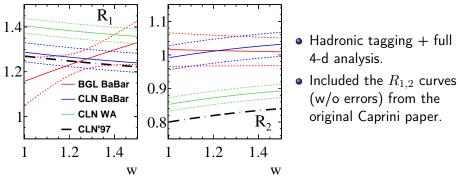
• Focus on exclusive $|V_{cb}|$ from $\overline{B} \to D^{(*)} \ell^- \overline{\nu}_\ell$ here. Problem has two parts: theory form-factor shapes and experimental rate normalization.

The FF shapes

- ullet k, the $\overline{B} o D^{(*)} W^*$ breakup mom. goes to zero at zero-recoil $(q^2_{
 m max})$.
- Rate $\propto k \ (B \to D^*)$ and $\propto k^3 \ (B \to D)$ vanishes near zero-recoil. Only lattice here.
- $B \to D^*$: published lattice data only <u>at</u> zero-recoil. Off zero-recoil lattice needed asap!
- Turning it around: what can flavor physics teach us about QCD?
 HQS.
- Do experiment/lattice agree in the overlapping q^2 region? "Clean" $R_{1,2}$ ratios between 3 FFs from $B \to D^*$.


3 / 11

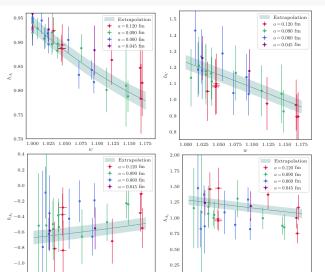
HQET for $\overline{B} \to D^*$


- w: relativistic γ factor of D^* in B RF
- At $\frac{\Lambda_{\rm QCD}}{m_{b,c}} \to 0$ limit, only w matters.
- Heavy Quark Symm (HQS): $\{b^{\uparrow}, b^{\downarrow}, c^{\uparrow}, c^{\downarrow}\}$ (spin-flavor symm.)
- Non-pert. QCD effects pushed into a single universal FF, $\zeta(w)$.
- ullet In time scales $\ll \varLambda_{
 m OCD}^{-1}$ Dirac structure in the weak current irrelevant

$$\begin{split} \frac{\langle D^*(v',\varepsilon)|V^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= ih_V(w)\epsilon^{\mu\nu\alpha\beta}\varepsilon_{\nu}^*v_{\alpha}'v_{\beta} \\ \frac{\langle D^*(v',\varepsilon)|A^{\mu}|\overline{B}(v)\rangle}{\sqrt{m_Bm_{D^*}}} &= h_{A_1}(w)(w+1)\varepsilon^{*\mu} - h_{A_2}(w)(\varepsilon^*\cdot v)v^{\mu} \\ - h_{A_3}(w)(\varepsilon^*\cdot v)v'^{\mu} \end{split} \quad A_1 &= \frac{w+1}{2}r'h_{A_1} \\ A_2 &= \frac{rh_{A_2} + h_{A_3}}{r'} &\equiv \frac{R_2h_{A_1}}{r'} \\ - h_{A_3}(w)(\varepsilon^*\cdot v)v'^{\mu} \end{split} \quad V &= \frac{h_V}{r'} \end{split}$$

• HQS limit: $\{h_V, h_{A_1}, h_{A_3}\} \rightarrow \zeta(w)$ and $h_{A_2} \rightarrow 0$. $r' \equiv \frac{2\sqrt{m_{D^*}m_B}}{(m_{D^*}+m_B)}$

BABAR $\overline{B} o D^*$ results $-R_{1,2}$ ratios [PRL 123 (2019) 091801]



- BABAR BGL: $R_1(1) \approx 1.2$ and the slope is positive; $R_2 \approx 1$ and flat.
- What does lattice say?...

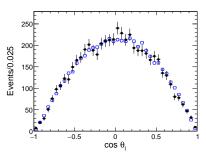
1 000 1 025 1 050 1 075 1 100 1 125 1 150 1 175

Prospects for $|V_{xh}|$

Preliminary $\overline{B} \to D^*$ from FNAL/MILC lattice

- Preliminary (+blinded) results from FNAL/MILC (A. Vaquero)
- Chiral continuation extrapolation.
- $h_{A1,V}$ lower uncertainty. $h_{A2,A3}$ uncertainties larger.
- To converge soon.
- Also JLQCD...

1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175


-1.2

6 / 11

Combined $\overline{B} \to D^{(*)}$ data + theory fits

- ullet Non-zero recoil $\overline{B} o D$ lattice data exist already [PRD 92(2015), 034506]
- Combined unbinned BABAR $\overline{B} \to D^{(*)}$ + lattice + HQET fits.
- Formalism from Bernlochner *et al.* [PRD 95(2017), 115008]. Expansion in α_s , $1/m_{c,b}$ with inputs from QCDSR + errors.
- Allows floating $\zeta(1)$ (leading IW function) to test departures from HQS.
- Does not require lattice $\overline{B} \to D^* \ w > 1$ data, but these would be very welcome!
- Additional complication for $\overline{B} \to D$ is background subtraction for 2d angular analysis in q^2 - $\cos\theta_\ell$. Compare with lattice $B^0_s \to D_s$ HPQCD HISQ FFs [PRD 101(2020), 074513].

Hadronic tagging: non-extended fits

- Hadronic tagging allows excellent resolution in the kinematic variables
- Eg.: BABAR $\overline{B} \to D$ data directly shows the expected $\sin^2 \theta_l$ distribution.

• Great for non-extended fits to disentangle the individual FF shapes.

Hadronic tagging: normalization issues

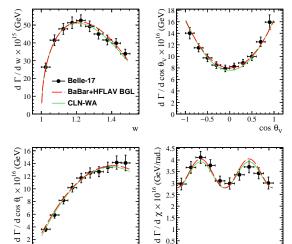
- Getting overall normalization needs $\epsilon_{\rm tag}$. Poorly known hadronic BFs can lead to a large uncertainty here.
- Also depends on the signal-side: D^* much cleaner than D.

Exclusive Branching Fraction: B0 -> D- Inu

The average BF is the result of a one-dimensional fit to the measurements listed.

Experiment	BF (rescaled) [%]	Parameters	Remarks
ALEPH	2.32 +/- 0.18 +/- 0.36	input parameters	Phys.Lett.B395:373-387,1997
CLEO	2.15 +/- 0.13 +/- 0.16	input parameters	Phys.Rev.Lett.82:3746,1999
BABAR	2.19 +/- 0.11 +/- 0.14	input parameters	Phys.Rev.Lett.104:011802,2010
BELLE	2.43 +/- 0.04 +/- 0.12	input parameters	Phys.Rev.D93:032006,2016
Average	2.31 +/- 0.04 +/- 0.09	chi2/dof = 2,20/3 (CL = 0.531)	eps pdf

Exclusive Branching Fraction: B+ -> D0bar Inu


The average RE is the result of a one-dimensional fit to the measurements listed

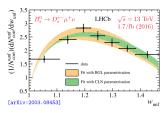
Experiment	BF (rescaled) [%]	Parameters	Remarks
CLEO	2.19 +/- 0.13 +/- 0.17	input parameters	Phys.Rev.Lett.82:3746,1999
BABAR	2.19 +/- 0.08 +/- 0.13	input parameters	Phys.Rev.Lett.104:011802,2010
BELLE	2.53 +/- 0.04 +/- 0.12	input parameters	Phys.Rev.D93:032006,2016
Average	2.35 +/- 0.03 +/- 0.09	chi2/dof = 3.78/2 (CL = 0.15)	Dens ndf

- Earlier tagged BABAR/Belle don't quite agree in $\overline{B} \to D$ BFs.
- $|V_{cb}|$ issue might be tied to ϵ_{tag} , not necessarily FFs.

Hadronic tagging: normalization issues (cntd.)

No apparent problems in the normalization with (unpublished) Belle-17 $\overline{B} \to D^*$ data wrt BABAR-19.

-0.5


0.5

cos θ,

χ (rad.)

(Immediate) Road ahead

- \bullet Some further tagged FF analyses from BABAR on $\overline{B} \to D^{(*)}$ expected.
- MILC/JLQCD nonzero recoil $\overline{B} \to D^*$ FFs \Rightarrow high priority!
- Hopefully these will lead to better understanding of higher order HQET corrections.
- Systematics on absolute normalizations for hadronic tagging from Belle II need to be better understood for precision $|V_{xb}|$.

- LHCb has majorly started using B_s^0 SL decays. $|V_{cb}|$ [PRD101 (2020), 072004] + FF shapes.
- $|V_{ub}|/|V_{cb}|$ from $B^0_s \to K \mu \nu$ in the pipeline.
- $B_s^0 o D_s^{(*)}$ golden modes for lattice!