The Necessity of DUNE Intranuclear $\mathcal{B} - \mathcal{L}$ -Violating Searches for a World-Leading, Complementary Physics Program

by J. L. Barrow

Snowmass 2021 Rare Processes and Precision Frontier Baryon and Lepton Violation Topical Group October 2nd, 2020 <u>Please see the associated Letter of Interest, and references therein</u>

DEEP UNDERGROUND NEUTRINO EXPERIMENT DEEP UNDERGROUND NEUTRINO EXPERIMENT DEEP UNDERGROUND NIVERSITE RESEARCH ASOCIATIO

> and do not necessarily reflect the views of the Universities Research Association. Inc.

Physics Motivation Why $\mathcal{B} - \mathcal{L}$ Violation?

How do we understand baryogenesis? What is the origin of the baryon abundance?

Astrophysicists prove Big Bang was result of gender reveal party gone wrong

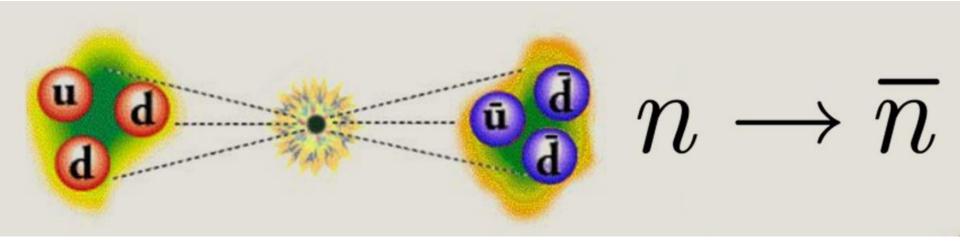
Can $\Delta B = \Delta L$ **Remedy the Baryon Asymmetry?**

- Baryon (*B*) and lepton number (*L*) are violated *infinitesimally* in the SM due to anomalies
- The SM nonperturbatively conserves *B L* (<u>t'Hooft 1976</u>)

 $\Rightarrow \Delta B = \Delta L$

- It turns out that no theory that operates within the SM has produced a proper baryon abundance <u>yet</u>, fully and consistently—EWBG???
 - Topological tunneling is completely inadequate
 - The **sphaleron** mechanism still <u>washes out</u> any asymmetry we would see today *if* when they are generated they conserve B - L

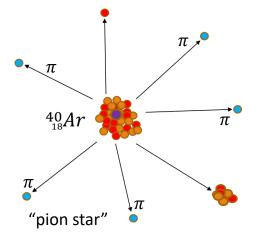
A. D. Dolgov, *Baryogenesis, 30 Years Later* M. E. Shaposhnikov et al 1993 and 1998

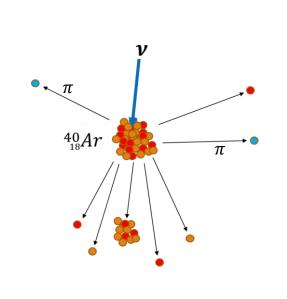

Figure 1 correspo

The short answer? NO! Proceed by contradiction... SHOULD B-L**BE VIOLATED**??? Maybe... But let's be more conservative, and focus on observing processes with

 $\Delta B \neq 0$

Work from Now Until Snowmass


Toward the FutureConsider $\mathcal{B} - \mathcal{L}$ -violating $n \to \overline{n}$ Understanding Modeling Systematics Beyond Previous Ad-hoc Assumptions


$\Delta \mathcal{B} = 2$ Signal Comparison

 $n \rightarrow \overline{n}$ vs. Backgrounds (ex: Atmospheric Neutrino, ν)

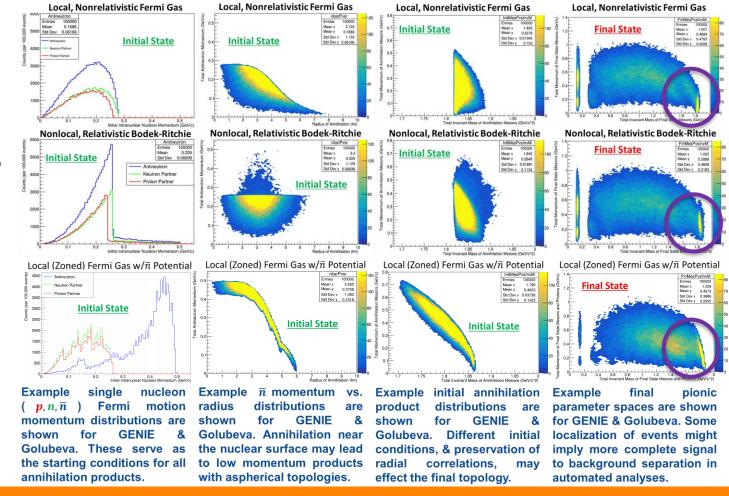
• $n \rightarrow \overline{n}$ Annihilation and Knockouts

- ~Noncontinuou s energy spectrum
- Generally a ~spherical topology
- ~Low momentum due only to Fermi motion

- Dover, Gal, and Richard <u>1983</u>, <u>1985</u>, *and* <u>1996</u> <u>~Golubeva and Kondratyuk</u>, <u>1997</u> <u>Kopeliovich et al 2018</u> Golubeva, JB, Ladd <u>2019</u> JB, Golubeva, Richard, Paryev 2020
- Neutral Current Atmospheric ν
 - Continuous energy spectrum
 - Generally a ~correlated topology
 - Large range of total momentum

10/2/2020

Goals of Ongoing $n \rightarrow \overline{n}$ Studies


- Utilize realistic models of rare process signals and associated backgrounds
 - Integration of the newest *nuclear model configurations* available in GENIE <u>and other</u> $\underline{n} \rightarrow \overline{n}$ generators from Golubeva et al. into full DUNE reconstruction chain underway
 - Fully oscillated atmospheric neutrino fluxes/spectra; expected counts complete
 - Proper v_{τ} CC-interactions **and subsequent** τ **decays underway** (issues with GEANT)
- Approximate uncertainties in signal and background topologies
 - Iterate across many nuclear model configurations *and generators* as possible
- Automate analysis techniques to extract expected lower limits of many rare processes
 - Generate many different samples for many different signals over many different nuclear model configurations, producing outputs from many individually trained CNN/BDTs

 $n \rightarrow \overline{n}$ Model Dependencies in Final State Topologies are Being Investigated

First foray into this study detailed in <u>our</u> <u>recent PRD</u>

Compares many GENIE models to our generator work with **E. S. Golubeva**

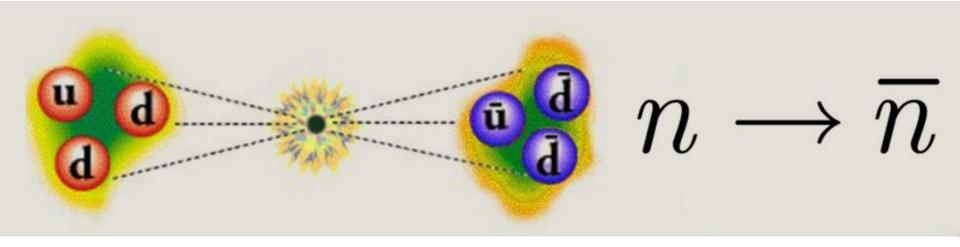
RF Townhall: Baryon and Lepton Number Violation Topical Group

Summary

- DUNE shows potential to reach $\tau_{n\bar{n}} \ge 5.58 \times 10^8 s$ lower limit
- Improvements are sought via...
 - Better reconstruction can hopefully lead to better ROI selection
 - BDT input of CNN PID for better cuts against background
- Iteration over nuclear model configurations underway
 - Will allow us to test stability of CNN/BDT response to various topological differences
 - Effectively determine model systematics
 - Will *S*: *B* remain the same independent of the nuclear model configuration?

Work to be completed by Summer 2021

- Must finish implementation of detector simulation and reconstruction for signal and background
 - Must integrate these with improved, novel PID automated methods (<u>C. Sarasty</u>, Cincinatti)
- Author DUNE technical notes on atmospheric neutrinos and $n \rightarrow \bar{n} / p \rightarrow K^+ \bar{\nu}$
 - Possibly also need a technical note on PID improvements
- Write DUNE-official final publication on DUNE sensitivities
 and associated model uncertainties
 - · derived from iteration across model spaces for signal/background



Joint Efforts and Snowmass Outcomes

- DUNE has the power to search for many rare processes and other BSM searches
 - Is understaffed and underfunded for this purpose
 - Simulation studies for these many unknown processes should be prioritized and funded
 - Culture around US students requirements may need to change
 - Encourage interested collaborators to join the HEP Working Group
 - Conveners: Lisa Koerner, Yun-Tse Tsai, Vitaly Kudryavtsev (outgoing)
 - Particularly need motivated graduate students and post-docs to join the group and contribute!

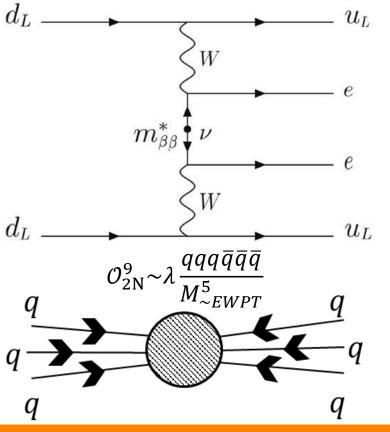
Theoretical Innovations for Future Experiments Regarding Baryon Number Violation, Part 1

ACFI WORKSHOP ON $\Delta \mathcal{B} = 2$

Associated Letter of Interest

 $\Delta \mathcal{B} = 2$: A state of the Field, and Looking Forward

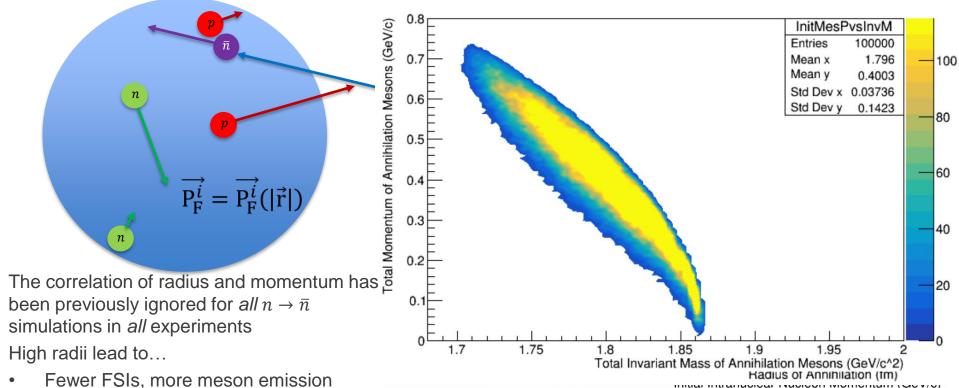
RF Townhall: Baryon and Lepton Number Violation Topical Group



Backup Slides

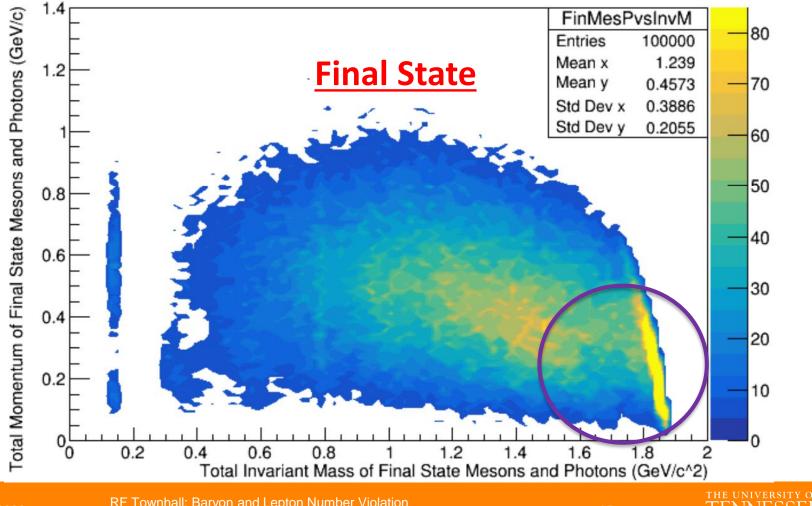
For your perusal

Going Beyond the Standard Model



What else do we need to add?

- Proton decay? $\propto qqql \Rightarrow B L$ conserving
 - Important to some BSM GUT SUSY theories
 - No experimental evidence in large volume detectors
 - LHC has turned up no persistent signs of SUSY
- Some other kinds of $\Delta B \neq 0$ or $\Delta L \neq 0$?
 - $\Delta B = 2$ operators?
 - $\Delta L = 2 \implies$ leptogenesis?
- Why some over others?
 - Can they properly generate the baryon asymmetry of the universe?
 - At what energy scales can these theoretically produce the correct value?


The Importance of Some Initial Physical Correlations Consider a local Fermi gas nuclear model of Fermi momentum (initial state)

Paryev's distribution

Lower total momentum (near *ideal case*)

10/2/2020

RF Townhall: Baryon and Lepton Number Violation Topical Group