Letter of Interest: physics potential with MEGII-fwd

SNOWMASS21-RF5_RF6-006

Lorenzo Calibbi, a Angela Papa, b,c Diego Redigolo, d,e Robert Ziegler, f Jure Zupan, g

JURE ZUPAN
U. OF CINCINNATI

PHYSICS MOTIVATION

- $\mu \to e\gamma, \mu \to 3e, \mu \to e$ conv., from dim-6 ops, will reach NP scales of $\sim 10^7 10^8 \text{GeV}$
- $\mu \rightarrow ea$ from dim-5 ops., can reach NP scales ~ 10^{10} GeV
 - higher than astrophysics constraints

cision Frontier Townhall Oct 2 2020

FLAVOR VIOLATING AXION-LIKE PARTICLES

- any spontaneously broken global symmetry \Rightarrow (p)NGB
 - if "light enough" can be DM
- in general couplings to gluons, photons, SM fermions

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_{\mu} a}{2f_a} \bar{f}_i \gamma^{\mu} (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

- implications of flavor violating couplings
 - do FCNC experiments probe interesting parameter space? \Rightarrow here focus on muon decays, $\mu \rightarrow ea$
 - possible improvements of search strategies?
 ⇒ MEGII-fwd, but also interesting what is the reach at Mu2e and Mu3e

$\mu^+ \rightarrow e^+ a$ searches

- two types of searches for $\mu^+ \to e^+ a$ positron line
- suppress the SM bckg., $\mu \rightarrow e\nu\bar{\nu}$

Jodidio et al. 1986

• use polarized muons $\langle P_{\mu} \rangle \simeq -1$, in the forward region SM suppressed

sensitive only to RH ALP

do not suppress the SM, also sensitive to LH ALP, TWIST

MEGII-FWD

- MEGII is designed to search for $\mu \rightarrow e \gamma$
 - could be repurposed for $\mu^+ \to e^+ a$ search \Rightarrow MEGII-fwd
- already has polarized muons
- place a Lyso ECAL downstream

- need to reconfigure the magnetic field
 - most conservative no focusing, F=1
 - possibly more realistic F=100
- interesting reach already with 2weeks of running*

* projections done for $10^8 \mu^+/s$, PSI $\pi E5$ beamline potentially $10^{10} \mu^+/s$ in 2025-Rare Processes and Precision Frontier Townhall

Calibbi, Redigolo, Ziegler, JZ, 2006.04795

- MEGII is
 - could t
- already ha
- place a Ly

- need to reconfigure the magnetic field
 - most conservative no focusing, F=1
 - possibly more realistic F=100
- interesting reach already with 2weeks of running*

- MEGII is
 - could t
- already has
- place a Ly

- need to reconfigure the magnetic field
 - most conservative no focusing, F=1
 - possibly more realistic F=100
- interesting reach already with 2weeks of running*

TIMELINE FOR SNOWMASS

- What will you work on between now and Snowmass, and what is your schedule for developing a contributed paper?
 - need to perform more detailed/realistic detector simulation
 - optimization of detector size, realistic estimates of background
 - assesment of realistic magnetic focusing
 - endgoal: realistic estimates of the MEGII-fwd reach
- timeline: ~6months

SNOWMASS OUTCOMES

- What common data sets, joint efforts, etc. do you need?
 - not clear, but open for suggestions
- What would you like to come out of the Snowmass process?
 - a better understanding of the reach for $\mu \rightarrow ea$ at MEGII-fwd, Mu2e and Mu3e

BACKUP SLIDES