Z lineshape and electroweak heavy flavor physics at FCC-ee (Lols: <u>#167</u>, <u>#152</u>)

Juan Alcaraz Maestre¹, Alain Blondel², Mogens Dam³, Patrick Janot⁴, and Emmanuel $\rm Perez^4$

Juan Alcaraz Maestre¹, Patrizia Azzi², Alain Blondel³, Mogens Dam⁴, Patrick Janot⁵, Stéphane Monteil⁶, and Guy Wilkinson⁷

Presented by: Juan Alcaraz (CIEMAT-Madrid)

Snowmass 2021 EF04 session 23 October 2020

FCC-ee context

- FCC-ee: 150 ab^{-1} , 5 x 10¹² Z decays in \approx 4 years of running at the Z pole
- Extraordinary √s precision: 100 keV at the Z, 300 keV at WW threshold → exquisite control of beam uncertainties (average, width, systematics)
- Aiming for up to ≈ 100 times better precision than LEP/SLD on several electroweak precision observables (EWPO)
- Current challenges: reduce uncertainties, establish theory / detector / machine requirements to reach the ultimate precision

Physics potential

J. Alcaraz, 23 Oct 2020, FCC-ee Z lineshape and EW HF

Ω

 $\Lambda/\sqrt{lc_i}l|_{95\%}$ [TeV]

- Expected precisions in a nutshell:
 - ≈ 10⁻⁴ on cross sections (aimed luminosity uncertainty); possibility to reduce it by an order of magnitude using the measured σ (ee→ $\gamma\gamma$) as reference
 - \circ ≈ 10⁻⁶ statistical uncertainties (≈ 1/√N) on relative measurements like forward-backward charge asymmetries
 - Ultimate uncertainties typically dominated by systematics; precious value of "Tera" Z samples to study / constrain many of those uncertainties

Z lineshape: mass

Magnet frequency v - 101 J. Alcaraz, 23 Oct 2020, FCC-ee Z lineshape and EW HF

- m₇: position of Z peak
 - Beam energy measured with extraordinary precision (△√s≈100 keV) using resonant depolarization of transversely polarized beams (method already used at LEP, much better prepared now, calibrations in situ with pilot bunches, no energy extrapolations, ...)
- Beam width/asymmetries studied analyzing the longitudinal boost distribution of the µµ system

arXiv:1909.12245

- Total Z width → basically coming from the visible width of the lineshape
- Statistical precision of 4 keV using hadronic lineshape
- Dominant systematics is the "point-to-point" beam uncertainty
- Study the point-to-point changes (3-5 points) using the invariant mass of dimuon events at each energy and realistic conditions at the beam interaction region
- A precise measurement of N_{ν} / invisible width requires a measurement of cross sections at the peak, not just $\Gamma_{z} \rightarrow$ luminosity dependency $\rightarrow \approx 10$ times improvement over LEP (it will be measured with better precision using radiative recoil ratios: $\sigma(\nu\nu\gamma)/\sigma$ (ll γ))

$R_{I} = \Gamma_{had} / \Gamma_{I}$

- Relative measurement, independent of luminosity: aiming for a 10⁻⁵ precision
- Extremely sensitive to new physics deviations (Q,T parameters: deviations of custodial symmetry)
- α_s(m²_z) modifies the hadronic partial width → R_l provides an ultra-precise measurement
- Studies to define detector requirements to ensure negligible systematic uncertainties on acceptance (a priori more critical on leptons)

$\sin^2 \theta_{W}^{eff}$ and $\alpha_{QED} (m_z^2)$

- sin²θ_W effective: g_V/g_A coupling ratio → forward-backward charge asymmetries (most precise in μμ in final state)
- α_{QED} (m²_Z): off-peak/peak evolution of the asymmetry (due to interference with γ* exchange)
- Measurement approaching the ultimate statistical sensitivity: 3 x 10⁻⁶
- 3 energy points (≈88, 91.2, 94 GeV)
- Studies to establish the experimental/theoretical needs (energy resolutions, exact angular description at this level of precision, ...)

Tau polarization: A_{τ} , A_{ρ}

- FCC-ee does not use longitudinal beam polarization:
 - It would reduce too much the statistics
 - Not needed: tau polarization asymmetry enough to precisely measure all L-R asymmetry parameters A_f:

$$P(\cos\theta) = \frac{\mathcal{A}_{\tau}(1+\cos^2\theta) + 2\mathcal{A}_{e}\cos\theta}{(1+\cos^2\theta) + 2\mathcal{A}_{e}\mathcal{A}_{\tau}\cos\theta}$$

- Current uncertainties for FCC-ee can be substantially reduced
- Proposal to study in detail the detector requirements (granularity, resolution, ...) to get optimal tau decay identification/separation and minimal systematic uncertainties in this measurement

A_{FB}(b): present status

- FEC hh ee he
- Electroweak observable presenting the largest deviations in the global SM fit (final LEP EW Working Group paper: <u>arXiv:hep-ex/0509008</u>)

 Aiming for a ≤ 0.1% relative precision measurement at FCC-ee ⇒ factor of ≥20 improvement w.r.t. LEP/SLC results

$A_{FB}(b/c), R_{b/c} = \Gamma_{b/c}/\Gamma_{had}$

J.A., arXiv:2010.08604

- New developments for A_{FB}(b/c): QCD corrections and uncertainties can be reduced significantly using acollinearity (ξ) cuts ⇒ not a limiting factor anymore to reach the ≤ 0.1% precision level
- Further improvements expected from better heavy flavor tagging capabilities and a more accurate measurement of the b flight direction
- Performing a realistic measurement with more sophisticated b-tagging techniques → detector requirements
- Studies to be extended to R_b, R_c double-tag measurements: increasing tag purity, better understanding of gluon-splitting and hemisphere correlations, ...

Summary table

Observable	present	FCC-ee	FCC-ee	Comment and		
	value $\pm \text{ error}$	Stat.	Syst.	leading exp. error		
$m_{\rm Z}~({\rm keV})$	91186700 ± 2200	4	100	From Z line shape scan		
5.37 226				Beam energy calibration		
$\Gamma_{\rm Z} ~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan		
				Beam energy calibration		
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons		
				acceptance for leptons		
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R^{Z}_{ℓ} above		
$R_b (\times 10^6)$	216290 ± 660	0.3	<60	ratio of bb to hadrons		
				stat. extrapol. from SLD		
$\sigma_{\rm had}^0 \; (\times 10^3) \; ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section		
				luminosity measurement		
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections		
				Luminosity measurement		
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	3	1	from $A_{FB}^{\mu\mu}$ at Z peak		
				Beam energy calibration		
$1/\alpha_{\rm QED}({\rm m}_{\rm Z}^2)(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak		
yan tatut ka piyanata ka Ka				QED&EW errors dominate		

• \approx two orders of magnitude improvement expected for Γ_{z} , R_{l} , α_{s} , $\sin^{2}\theta_{W}^{eff}$

HF-EW summary table

Observable	present	FCC-ee	FCC-ee	Comment and
	value $\pm \text{ error}$	Stat.	Syst.	leading exp. error
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$\mathrm{A_{FB}^{pol, au}}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization asymmetry
				τ decay physics
$R_b (\times 10^6)$	216290 ± 660	0.3	$<\!60$	ratio of bb to hadrons
				stat. extrapol. from SLD

• Objective: ≥ 20 times better than current precision

- A few years of FCC-ee running at the Z pole should provide EWPO measurements with 20-100 times the current precision, thus giving early access to universal (and also flavor-dependent) new physics effects at the 10 TeV scale:
 - $M_z, \alpha_{QED}(M_z^2), \alpha_s(M_z^2), N_v, sin^2 \theta_w^{eff}, P_\tau, A_{FB}(b/c), R_{b/c}$
- Systematics will be the limiting factor in many measurements ⇒ very detailed studies needed (theory+experiment) to reduce it. These studies will set the requirements for the future detectors
- We invite you to join these studies, intended to better understand those limitations and find new ways to reduce the associated uncertainties, via new theory developments / analysis methods / detector modifications

Backup

Present status of A_{FB}(b)

- QCD corrections are the dominant source of correlated systematics between measurements
- Measurement

 (arXiv:hep-ex/0509008):
 0.0992
 ± 0.0015 (stat.)
 ± 0.0007 (syst.)

			0.1				
Source	$R_{\rm b}^0$	$R_{\rm c}^0$	$A_{ m FB}^{0, m b}$	$A_{\rm FB}^{0, m c}$	\mathcal{A}_{b}	\mathcal{A}_{c}	
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$	
statistics	0.44	2.4	1.5	3.0	1.5	2.2	
internal systematics	0.28	1.2	0.6	1.4	1.2	1.5	
QCD effects	0.18	0	0.4	0.1	0.3	0.2	
$B(D \rightarrow neut.)$	0.14	0.3	0	0	0	0	
D decay multiplicity	0.13	0.6	0	0.2	0	0	
B decay multiplicity	0.11	0.1	0	0.2	0	0	
$B(D^+ \to K^- \pi^+ \pi^+)$	0.09	0.2	0	0.1	0	0	
$B(D_s \to \phi \pi^+)$	0.02	0.5	0	0.1	0	0	
$B(\Lambda_{\rm c} \rightarrow {\rm p~K^-}\pi^+)$	0.05	0.5	0	0.1	0	0	
D lifetimes	0.07	0.6	0	0.2	0	0	
B decays	0	0	0.1	0.4	0	0.1	
decay models	0	0.1	0.1	0.5	0.1	0.1	
non incl. mixing	0	0.1	0.1	0.4	0	0	
gluon splitting	0.23	0.9	0.1	0.2	0.1	0.1	
c fragmentation	0.11	0.3	0.1	0.1	0.1	0.1	
light quarks	0.07	0.1	0	0	0	0	
beam polarisation	0	0	0	0	0.5	0.3	
total correlated	0.42	1.5	0.4	0.9	0.6	0.4	
total error	0.66	3.0	1.6	3.5	2.0	2.7	
1964 - 200 -				10			