Precision Measurements with (Anti)Neutrinos at LBNF

R. Petti

University of South Carolina, USA

LoI: SNOWMASS21-NF5-NF6-EF6-EF4-RF1-RF6-122

EF04 Topical Group Community Meeting November 6, 2020

LBNF SPECTRA & STATISTICS

 \implies Can collect $\sim 10^8$ CC events with compact high-resolution detector ($\Delta E_{\mu} \leq 0.2\%$)

NEAR DETECTOR COMPLEX IN DUNE

CONTROL OF TARGETS

• Straw Tube Tracker designed for a control of ν -target(s) similar to e^{\pm} DIS experiments:

- Typical *v*-detectors: systematics from target composition & materials, limited target options;
- Thin (1-2% X₀) passive target(s) separated from active detector (straw layers);
- Target layers spread out uniformly within tracker by keeping low density $0.005 \le
 ho \le 0.18~g/cm^3$
- \implies STT can be considered a precision instrument fully tunable/configurable

Roberto Petti

- ◆ Targets of high chemical purity give
 ~ 97% of STT mass (straws 3%)
- "Solid" hydrogen target from a model-independent subtraction of CH₂ & C after kinematic selection
- Thin targets can be replaced during data taking: C, Ca, Ar, Fe, Pb, etc.
- ⇒ STT considered for inner tracker of SAND in DUNE ND

GENERAL PURPOSE PHYSICS FACILITY

- + Possible to constrain systematics reducing the precision gap with electron experiments
 - Relative ν_{μ} and $\bar{\nu}_{\mu}$ flux vs. E_{ν} to < 1% from exclusive processes on H at small energy transfer;
 - Calibration of neutrino energy scale and nuclear smearing with H control sample.
- Turn the LBNF ND site into a general purpose $\nu \& \overline{\nu}$ physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
 - Precision measurements as probes of New Physics (BSM);
 - Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....

 \implies Hundreds of diverse physics topics offering insights on various fields

No additional requirements: same control of targets & fluxes to study LBL systematics

ELECTROWEAK MEASUREMENTS

- Complementarity with colliders & low-energy measurements:
 - <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole);
 - Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
 - Single experiment to directly check the running of $\sin^2 \theta_W$;
 - Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range.

- Achievable sensitivity depending upon HE beam exposure

SUMMARY

- The intensity and different $\nu(\bar{\nu})$ spectra available at the LBNF offer unique opportunities for neutrino physics, if coupled with a high resolution ND of a few tons
- STT instrumentation of SAND provides control of configuration, material & mass of neutrino targets similar to electron experiments & suite of various target materials.
- "Solid" hydrogen concept can provide high statistics $O(10^6)$ samples of $\nu(\bar{\nu})$ -hydrogen interactions, allowing precisions in the measurement of $\nu \& \bar{\nu}$ fluxes < 1%.
- Turn the LBNF ND site into a general purpose $\nu \& \bar{\nu}$ physics facility with broad program complementary to ongoing fixed-target, collider and nuclear physics efforts
- Precision electroweak measurements using various independent channels characterized by different momentum scale
 - \implies Study sensitivity vs. exposure and possible combination with other measurements

Precision Measurements with (Anti)Neutrinos at LBNF

G. Adamov^{1,10}, L. Alvarez Ruso², I. Bagaturia¹, B. A. Bambah³⁰, P. Bernardini^{3,4}, S. Bertolucci^{5,6}, M. Bhattacharjee⁷, B. Bhuyan⁷, S. Biagi⁸, B. Brahma³¹, A. Caminata⁹, A. Cervelli⁵, A. Chatla³⁰, D. Chokheli^{1,10}, A. Chukanov¹⁰, S. Davini⁹, S. Di Domizio^{9,11}, C. Distefano⁸, L. Di Noto^{9,11}, M.V. Diwan¹³, H. Duyang¹², P. Evtoukhovitch¹⁰, A. Falcone^{14,15}, O. Fedin¹⁶, A. Ferrari¹⁷, F. Ferraro^{9,11}, A. Gabrielli⁵, Z. Ghorbani Moghaddam⁹, A. Giri³¹, M. Guerzoni⁵, B. Guo¹², M.A. Iliescu^{18,19}, A. Jha³⁰, I. Kakorin¹⁰, A.L. Kataev²⁰, A. Khvedelidze^{1,10}, B. Kirby¹³, U. Kose^{5,19}, S.A. Kulagin²⁰, C. Kullenberg¹⁰, C. Kuruppu¹², R. Lalnuathunga³¹, I. Lomidze¹, G. Laurenti⁵, R. Majhi³⁰, V. Maleev¹⁶, S. Malhotra²⁴, G. Mandrioli⁵, N. Mauri^{5,6}, P. Mehta²¹, S.R. Mishra¹², N. Moggi^{5,6}, R. Mohanta³⁰, A. Montanari⁵, S. Movchan¹⁰, S. Nagu²², A. Nandi⁷, A. Nath⁷, F. Olness²³, M. Pallavicini^{9,11}, R. Papaleo⁸, L. Pasqualini^{5,6}, L. Patrizii⁵, R. Petti¹², V. Pia^{5,6}, F. Poppi^{5,6}, M. Pozzato^{5,6}, G. Riccobene⁸, P.R. Sala²⁵, O. Samoylov¹⁰, P. Sapienza⁸, F. H. Sawy^{26,28}, Ja. Singh²², Jy. Singh²², K. Singh²⁴, L. Singh²⁷, V. Singh²⁷, G. Sirri⁵, L. Stanco²⁶, S. Sundar Rajan²⁴, A. Surdo⁴, N. Talukdar⁷, M. Tenti⁵, V. Teotia²⁴, F. Terranova^{14,15}, G. Testera⁹, M. Torti^{14,15}, N. Tosi⁵, R. Travaglini²⁶, Z. Tsamalaidze^{1,10}, N. Tsverava^{1,10}, S. Vasina¹⁰, M. Vicenzi^{9,11}, S. Zucchelli^{5,6}, and B. Wonsak²⁹

Backup slides