

Measurements of the top quark mass at the ILC Snowmass EF04 meeting November 20th 2020

Esteban Fullana @ IFIC-Valencia (UVEG-CSIC) presenting the work of the Valencia group, Frank Simon studies and Kacper Nowak's work

Top Mass Measurements in e+e- Colliders

Overview

- The accelerator side: Requires sufficient collision energy for top pair production
 - So far thoroughly studied for ILC, CLIC, some derivative studies for FCCee

Top Mass in e+e- - Snowmass21 EF04 - Nov 2020

Speaker : Esteban Fullana

+ a rich set of reports and conference proceedings on arXiv

Frank Simon (fsimon@mpp.mpg.de)

This talk includes material from the following people:

IFFIC INSTRUCT DE DISCR	Scanning Strat
Top Mass from Radiative Events PhD Thesis of M. Boronat and P. Gomis Together with J.Fuster, M. Perello, M. Vos, E. Fullana from Valencia group	Frank Simon Max-Planck-Institut für F E-mail: fsimon@mpp.mp ABSTRACT: A scan of the collider provides the possi when using two dimension as the width and the Yuk of the integrated luminosi
Theoretical framework: A. H. Hoang, V. Mateu, A. Widl,	program. This contribution exploratory measurement
	studies a scanning progra the mass, width and the variations and parametric $\Delta_{p} \Delta_{q} \ge it$ MAX-PLANCK-INSTITUT
Physics Letters B 804 (2020) 135353	FUR PHYSIP
Contents lists available at ScienceDirect Physics Letters B Www.elsevier.com/locate/physletb	
Top quark mass measurement in radiative events at electron-positron colliders	
M. Boronat ^a , E. Fullana ^a , J. Fuster ^a , P. Gomis ^{a,*} , A.H. Hoang ^{b,c} , A. Widl ^b , V. Mateu ^{d,e} , M. Vos ^a	
^a Institut de Física Corpuscular (Universitat de València/CSIC), c./ Catedrático J. Beltran, 46980 Paterna, Valencia, Spain ^b University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria ^c Erwin Schrödinger International Institute for Mathematical Physics, Austria ^d Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, Plaza de la Merced S/N, 37008 Salamanca, Spain ^e Instituto de Física Teórica UAM-CSIC, Spain	

Plus the following papers :

tegies at the Top Threshold at ILC

Physik, Munich, Germany

og.de

top quark pair production threshold at a future electron-positron ibility for high-precision measurements of the top quark mass, and, al fits of the measured cross sections, also of other properties such kawa coupling. The energy range of the scan and the distribution ity can be optimized depending on the main goals of the threshold on examines the possibility to determine the top quark mass in fast ts with an adequate precision to enable such an optimization, and am with a reduced energy range of 6 GeV for the measurement of Yukawa coupling, taking theoretical uncertainties from QCD scale uncertainties from the strong coupling constant into account.

Eur. Phys. J. C (2013) 73:2530 DOI 10.1140/epjc/s10052-013-2530-7

Special Article - Tools for Experiment and Theory

Top quark mass measurements at and above threshold at CLIC

Katja Seidel¹, Frank Simon^{1,a}, Michal Tesař¹, Stephane Poss²

¹Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany ²CERN, 1211 Geneva, Switzerland

Received: 15 March 2013 / Revised: 26 July 2013 / Published online: 20 August 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Optimising top-quark pair-production threshold scan at future e+e- colliders

ILD Top/HF group meeting, November 13, 2020 Kacper Nowak, Aleksander Filip Żarnecki

FACULTY OF PHYSICS UW

THE EUROPEAN **PHYSICAL JOURNAL C**

(<u>https://arxiv.org/pdf/hep-ph/0207315</u>, <u>https://arxiv.org/pdf/1310.0563</u>, <u>https://arxiv.org/pdf/1604.08122</u>)

Let's start with:

Top Mass from Radiative Events

PhD Thesis of M. Boronat and P. Gomis

Together with J.Fuster, M. Perello, M. Vos, E. Fullana from Valencia group

Theoretical framework: A. H. Hoang, V. Mateu, A. Widl,

- ^e Instituto de Física Teórica UAM-CSIC, Spain

...because also in the lifetime of the ILC would be convenient to start with this measurement of the top-quark mass

Mass from Radiative Events

At CLIC, ILC - 380 and 500 GeV

f

 A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

> matched NNLO + NNLL calc luminosity spectrum folded in Extraction of short distance N

ct

 $\sim \sim \sim$

	cms energy	CLIC, \sqrt{s}	= 380 GeV	ILC, \sqrt{s} =	= 50
	luminosity $[fb^{-1}]$	500	1000	500	40
	statistical	$140{ m MeV}$	$90{ m MeV}$	$350\mathrm{MeV}$	110
	theory	461	MeV	55 N	4eV
ulation.	lum. spectrum	201	MeV	20 1	ΛeV
n explicitly;	photon response	$16{ m MeV}$		$85 \mathrm{MeV}$	
MSR mass	total	$150\mathrm{MeV}$	$110{ m MeV}$	$360{ m MeV}$	150

The expected uncertainty on the top $\overline{\mathrm{MS}}$ mass

can provide 5 σ evidence for scale evolution ("running") of the top quark MSR mass from ILC500 data alone

Scanning Strategies at the Top Threshold at ILC

Frank Simon

Max-Planck-Institut für Physik, Munich, Germany

E-mail: fsimon@mpp.mpg.de

ABSTRACT: A scan of the top quark pair production threshold at a future electron-positron collider provides the possibility for high-precision measurements of the top quark mass, and, when using two dimensional fits of the measured cross sections, also of other properties such as the width and the Yukawa coupling. The energy range of the scan and the distribution of the integrated luminosity can be optimized depending on the main goals of the threshold program. This contribution examines the possibility to determine the top quark mass in fast exploratory measurements with an adequate precision to enable such an optimization, and studies a scanning program with a reduced energy range of 6 GeV for the measurement of the mass, width and the Yukawa coupling, taking theoretical uncertainties from QCD scale variations and parametric uncertainties from the strong coupling constant into account.

Eur. Phys. J. C (2013) 73:2530 DOI 10.1140/epjc/s10052-013-2530-7 THE EUROPEAN **PHYSICAL JOURNAL C**

Special Article - Tools for Experiment and Theory

Top quark mass measurements at and above threshold at CLIC

Katja Seidel¹, Frank Simon^{1,a}, Michal Tesař¹, Stephane Poss²

¹Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany ²CERN, 1211 Geneva, Switzerland

Received: 15 March 2013 / Revised: 26 July 2013 / Published online: 20 August 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

... and now that we have the top-quark mass in the ~100MeV ballpark we can move to

EPJ C73, 2530 (2013) (CLIC, (ILC): Threshold, direct)

JHEP 11, 003 (2019) (CLIC: Threshold, radiative, direct)

+ a rich set of reports and conference proceedings on arXiv

At CLIC, ILC, FCCee

- The top threshold provides excellent sensitivity to the mass and other top quark properties
 - Measurement of the top quark mass in theoretically well-defined mass schemes

• Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)

At CLIC, ILC, FCCee

- The top threshold provides excellent sensitivity to the mass and other top quark properties
 - Measurement of the top quark mass in theoretically well-defined mass schemes

Top Mass in e+e- - Snowmass21 EF04 - Nov 2020

[qd]

0.6 0.5

SS 0.4

0.3

0.2

0.1

• Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)

- Sensitivity to :
 - Top-quark mass
 - Top-quark width
 - Yukawa coupling
 - Strong coupling constant

At CLIC, ILC, FCCee

- The top threshold provides excellent sensitivity to the mass and other top quark properties
 - Measurement of the top quark mass in theoretically well-defined mass schemes

Top Mass in e+e- - Snowmass21 EF04 - Nov 2020

[qd] 0.7

9.0 9.0

SS010.4

0.3

 Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)

- Sensitivity to :
 - Top-quark mass
 - Top-quark width
 - Yukawa coupling

So we are going to assume three scenarios

• Strong coupling constant

Speaker : Esteban Fullana

Scenario 1: We fit all float top quark mass, width, Yukawa coupling and alpha_s

arXiv:hep-ph/0207315v2 23 Oct 2002

Multi-parameter fits to the *tt* threshold observables at a future e^+e^- linear collider

Manel Martinez^a, Ramon Miquel^b

^a Institut de Física d'Altes Energies, Univ. Aut. de Barcelona E-08390 Bellaterra (Barcelona) Spain ^b Lawrence Berkeley National Laboratory, Physics Division 1 Cyclotron Road, Berkeley, CA 94720, USA

November 1, 2018

$$\Delta m_t = 31 \text{ MeV}$$
 $\Delta \alpha_s = 0.001 \text{ (constraint)}$
 $\Delta \Gamma_t = 34 \text{ MeV}$ $\frac{\Delta \lambda_t}{\lambda_t} = ^{+0.35}_{-0.65}$.

This scenario will be revisited in the last part of the talk

- Assumes an integrated luminosity of 300 fb⁻¹ (10 points)
- Assumes M(Higgs) = 120GeV
- TESLA beam conditions
- Theoretical error normalisation ~1%
- 3 observables : XS, momentum distribution and F-B asym.
 - But XS is dominant

Scenario 2: We fit the mass and the coupling

fit the Yukawa coupling, floating the mass, but not the width. Vary alpha_s within some uncertainty.

(*) ratio wrt the SM predicted value

8 point scan		10 point scan	
y_t	marg.		marg.
$(\pm 35_{\rm (stat)} \pm 45_{\rm (theo)})$ MeV	17.0 MeV	$\binom{+34}{-31}$ (stat) ± 42 (theo)) MeV	$15.2 { m MeV}$
$^{+0.120}_{-0.140}{}_{ m (stat)}\pm 0.09{}_{ m (theo)}$	0.055	$^{+0.128}_{-0.112(ext{stat})}\pm 0.132_{(ext{theo})}$	0.047

Yukawa coupling current (pdg) value(*) : 1.07+0.34-0.43

Prospects after the ILC@500GeV run (1ab⁻¹) set at the 10% ballpark.

Scenario 3 : We fit only the mass

extraction of the top mass assuming the SM: fix width to SM prediction, fix y_t = 1. Vary alpha_s within some uncertainty.

error source	$\Delta m_t^{ m PS} \ [{ m MeV}]$
stat. error (200 fb ^{-1})	13
theory (NNNLO scale variations, PS scheme)	40
parametric (α_s , current WA)	35
non-resonant contributions (such as single top)	< 40
residual background / selection efficiency	10 - 20
luminosity spectrum uncertainty	< 10
beam energy uncertainty	< 17
combined theory & parametric	30-50
combined experimental & backgrounds	25 - 50
total (stat. + syst.)	40 - 75

- 8 points configuration for this uncertainty
- available for 2040 expect further reductions

For other configurations of the scan points :

parameter	8 point scan	10 point sca
1D fit		
m_t	$(\pm 10.3(\text{stat}) \pm 44(\text{theo})) \text{ MeV}$	$(12.2(ext{stat}) \pm 40(ext{theorem}))$

- Detailed evaluation of systematic uncertainties
- Theory dominated (~40MeV vs ~10MeV); assuming a N4LO

an		
eo))	MeV	

Scenario 1 revisited Studies done by Kacper Nowak and Filip Zarnecki

Yukawa coupling **Uncertainty 0.1** Strong coupling uncertainty 0.001

Optimising top-quark pair-production threshold scan at future e+e- colliders

ILD Top/HF aroup meeting, Nove Kacper Nowak, Aleksander Filip Żarnecki

results for the benchmark scenario

See Kacper Thesis <u>CERN-THESIS-2020-099</u> for more details

Optimisations (based on the genetic algorithm) Optimising top-quark pair-production **Studies done by Kacper Nowak and Filip Zarnecki** threshold scan at future e+e- colliders

Kacper Nowak, Aleksander Filip Żarnecki

See Kacper Thesis <u>CERN-THESIS-2020-099</u> for more details

Optimisations (based on the genetic algorithm) Optimising top-quark pair-production Studies done by Kacper Nowak and Filip Zarnecki threshold scan at future e+e- colliders

Kacper Nowak, Aleksander Filip Żarnecki

Statistical uncertainty of the extracted top-quark mass can be reduced by ~25%, without losing precision in width or Yukawa determination

Summary

- Current precision ~50MeV dominated by theoretical uncertainty
- Possibility to measure other parameters : width, strong coupling and Yukawa
 - To be decided after the ILC@500GeV run
- Room for optimisation and the optimisation depends on the parameters we want to aim

the end

Dependency with Alpha_s

Taken from arXiv:1604.08122v1 [hep-ex]

At CLIC, ILC, FCCee

- properties

Top Mass in e+e- - Snowmass21 EF04 - Nov 2020

- Assuming an integrated luminosity of 200 fb⁻¹ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)
- Standard fit of mass only: ILC 12.2 MeV [stat] CLIC 13.3 MeV [stat] FCCee 10.0 MeV [stat]
- Detailed evaluation of systematic uncertainties
- Multi-parameter fits (mass, width, α_s , y_t), scan optimization...

