

NIELS BOHR INSTITUTE UNIVERSITY OF COPENHAGEN

Charged Lepton Flavour Violations at the FCC-ee

Mogens Dam Niels Böhr Institute Copenhagen

Snowmass2021 Rare Processes and Precision Frontier Townhall Meeting 2 October 2020

Picture and slide layout, courtesy Jörg Wenninger

- a. Extremely brief on FCC-ee
- b. Charged Lepton Flavour Violating τ decays
- c. Charged Lepton Flavour Violating Z decays

References:

- FCC CDR Volume 1
- MD, Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider SciPost Phys.Proc. 1 (2019) 041, DOI: <u>10.21468/SciPostPhysProc.1.041</u>

FCC-ee

Luminosity & Statistics

In this talk, concentrate on the Z-pole energy point

Enormous statistics of Z bosons and of τ leptons

	Z decays	5 X 10 ¹²			
	$Z \to \tau^+\tau^-$	1.7 X 10 ¹¹			
1	1 vs. 3 prongs	4.2 X 10 ¹⁰			
	3 vs. 3 prong	3.6 x 10 ⁹			
	1 vs. 5 prong	2.8 x 10 ⁸			
	1 vs. 7 prong	< 87,000			
	1 vs 9 prong	?			

A wealth of EW and Higgs Precision Measurements

Observable	Measurement	Current precision	FCC-ee stat.	FCC-ee syst.	Challenge	Higgs		
m _z (keV)	Z lineshape	91186700 ± 2200	5	100	E _{Beam} calib	Coupling	HL-LHC	FCC-ee
Γ_{z} (keV)	Z lineshape	2495200 ± 2300	8	100	E _{Beam} calib	Янww	1.4%	0.43%
R ₁ (×10³)	Ratio had to lept	20767 ± 25	0.01	0.2-1	Lepton accept	9 нzz	1.3%	0.17%
α _s (m _z) (×10 ⁴)	From R _ℓ	1196 ± 30	0.1	0.4-1.6	ditto	9 ньь	2.9%	0.61%
R _b (×10 ⁶)	Ratio bb to hadrons	216290 ± 660	0.3	< 60	$g \rightarrow bb$	9 нсс	SM	1.21%
N _v (×10 ³)	Peak cross section	2991 ± 7	0.005	<1	Lumi meast	g _{Hττ}	1.7%	0.74%
sin²θ _w eff (×10 ⁶)	From A _{FB} ^{µµ} at Z peak	231480 ± 160	3	2-5	E _{Beam} calib	9 нμμ	4.4%	9.0%
1/α _{QED} (m _Z) (×10 ³)	From A _{FB} ^{µµ} off-peak	128952 ± 14	4	small	QED corr.	9 _{нүү}	1.6%	3.9%
A _{FB} ^{pol,τ} (10 ⁴)	au pol charge assym	1498 ± 49	0.15	< 2		g _{Hgg}	1.8%	1.0%
m _w (MeV)	WW threshold scan	80385000 ± 15000	600	300	E _{Beam} calib	BR _{EXOT}	SM	< 1.0%
N _v	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, \ell \ell$	2.92 ± 0.05	0.001	< 0.001	?	Г _н	SM	1.3%
α _s (m _w) (×10 ⁴)	From R_{ℓ}^{W}	1170 ± 420	3	small	Lepton accept	a	2 5%	
m _{top} (MeV)	tt threshold scan	172740 ± 500	20	small	QCD corr	9Htt	2.5/0	
$\Gamma_{ m top}$ (MeV)	tt threshold scan	1410± 190	40	small	QCD corr	9 ннн	50%	34%
$\lambda_{top} / \lambda_{top}^{SM}$	tt threshold scan	1.2 ± 0.3	0.08	small	QCD corr			

... and, on top of that, the phenomenal statistics allows sensitivity to rare processes ...

Two benchmark modes:

• Current limits:

• Main background: Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$

 $\square\ \tau \to \mu\gamma\$ decay faked by combination of γ from ISR/FSR and μ from $\tau \to \mu\nu\bar{\nu}$

- At FCC-ee, with 1.7 x 10¹¹ $\tau^+\tau^-$ events, what can be expected?
 - Boost 8-9 times higher than at B-factories
 - Detector resolutions rather different, probably especially ECAL
 - \square Parametrised study of signal and the main background, $e^+e^- \to \tau^+\tau^-\gamma$, performed
 - ✤ Following 3 pages
 - **□** From study (assuming 25% signal & background efficiency), projected BR sensitivity

2 x 10-9

• With the recently suggested crystal ECAL, possible a factor of about 6-10 better

2008.00338

$\tau \to \mu \gamma$ Study – The signal

• Generate signal events with pythia8: $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma)$, with $\tau^- \rightarrow \mu^-\gamma$

$\tau \to \mu \gamma \, Study$ – The background

- Background: Generate 5 x 10⁸ events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$ \Box 1 x 10⁹ $\tau \rightarrow \mu\nu\nu$ decays corresponding to
 - * $5.7 \times 10^9 \tau$ decays from 8.4 × 10¹⁰ Z decays (1.6% of full FCC-ee statistics)
- \blacklozenge Study all μ and γ combinations

$\tau \to \mu \gamma \, Study$ – The background

- Background: Generate 5 x 10⁸ events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$ \Box 1 x 10⁹ $\tau \rightarrow \mu\nu\nu$ decays corresponding to
 - * $5.7 \times 10^9 \tau$ decays from 8.4 × 10¹⁰ Z decays (1.6% of full FCC-ee statistics)
- \blacklozenge Study all μ and γ combinations

$\tau^{-} \rightarrow \ell^{-} \ell^{+} \ell^{-}$

• Current limits:

□ All 6 combs. of e^{\pm} , μ^{\pm} : Br $\leq 2 \times 10^{-8}$ Belle@10.6 GeV; 7.2 × 10⁸ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$: no cand. □ $\mu^{-}\mu^{+}\mu^{-}$: Br < 4.6 × 10⁻⁸ LHCb 2.0 fb⁻¹: background candidates

♦ FCC-ee prospects

□ Expect this search to have *very low* background, even with FCC-ee like statistics

• Should be able to have sensitivity down to BRs of $\leq 10^{-10}$

Many more decay modes to search for when time comes...

$Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$

Current limits

 \Box Br(Z $\rightarrow \mu\tau$) < 9.5 × 10⁻⁶

 $\Box Br(Z \rightarrow e\tau) < 8.1 \times 10^{-6}$ LHC/ATLAS (139 fb⁻¹ \Rightarrow 2.8 x 10⁸Z decays) [ATLAS-CONF-2020-35]

LEP limits – best for > 20 years untill ICHEP20

 $\Box Br(Z \rightarrow e\tau) < 9.8 \times 10^{-6} LEP/OPAL \quad (4 \times 10^{6} Z decays)$ $\Box Br(Z \rightarrow \mu\tau) < 12. \times 10^{-6} LEP/DELPHI (4 \times 10^{6} Z decays)$

- ♦ LEP method
 - Identify *clear tau decay* in one hemisphere
 - Look for *"beam-energy" lepton* (electron or muon) in other hemisphere
- Limitation: How to define "beam-energy" lepton
 - \Box Unavoidable background from $\tau \rightarrow evv / \tau \rightarrow \mu vv$ with two (very) soft neutrinos

How much background depends on energy/momentum resolution

$Z \to {\boldsymbol \ell} \tau$ - Study of Sensitivity

- Generate (very) upper part of μ momentum spectrum for τ → μvv decays
 Luminosity equivalent to 5 × 10¹² Z decays
- Inject LFV signal of adjustable strength

u Here for illustration, $Br(Z \rightarrow \tau \mu) = 10^{-7}$, i.e. 500,000 μ

- Smear momentum by variable amounts, here **1.8 x 10**-3
- ◆ Define x > 1 as signal region —
- Derive 95% confidence limit on excess in signal region
- Findings:
 - Sensitivity scales linear with momentum resolution
 - FCC-ee detectors will (tentatively) have a momentum resolution at p=45.6 GeV of 1.5 x 10⁻³
 - ✤ Ten times better than for LEP detectors
 - □ Add contribution from FCC-ee beam-energy spread (0.9 x 10⁻³). Total: 1.8 x 10⁻³

~10⁻⁹

- Sensitivity for 5 x 10¹² Z decays, 25% signal and bkg efficiency (clear tau)
 - □ For $Z \rightarrow \tau \mu$, sensitivity down to BRs of ~10⁻⁹
 - □ For Z→ τe, similar sensitivity
 - Momentum resolution of electrons tend to be slightly worse than muons due to bremsstrahlung. However, downwards smearing is not a major concern.

14

→ eu

2

(b)

- Current limit:
 - **7.5 x 10⁻⁷ LHC/ATLAS** (20 fb⁻¹; no candidates)

. (E-E_{beam})/σ_ν **1.7 x 10⁻⁶ LEP/OPAL** (4.0 x 10⁶ Z decays: no candidates) OPAL DATA 91-94

◆ In e⁺e⁻, clean experimental signature:

Beam energy electron vs. beam energy muon

- Main experimental challenge:
 - Catastrophic bremsstrahlung energy loss of muon in electromagnetic calorimeter
 - * Muon would deposit (nearly) full energy in ECAL: Misidentification $\mu \rightarrow e$
 - NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4 x 10⁻⁶
 - ✤ Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - If dE/dx mesaurement available, (some) independent e/µ separation at 45.6 GeV
 - Could give handle to determine misidentification probability $P(\mu \rightarrow e)$
- ◆ FCC-ee:
 - □ Misidentification from catastrophic energy loss corresponds to limit of about $Br(Z \rightarrow e\mu) \simeq 10^{-8}$
 - □ Possibly do $\mathcal{O}(10)$ better than that Br(Z → eµ) ~ 10⁻⁹ (probably even 10⁻¹⁰ with IDEA dE/dx)

Z.Phys. C67

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce 1.7 x 10¹¹ τ⁺τ⁻ pairs
- Statistics comparable to (factor ~3 higher) Belle2 projection; higher boost (γ=25)
 Boost is advantageous for many studies
- ◆ Searches for lepton flavour violating τ decays; sensitivites comparable to Belle2
 □ For two benchmark studies, range from ≤ 10⁻¹⁰ to few x 10⁻⁹
 □ Many more studied to be pursued
- Improved sensitivity to lepton flavour violating Z decays by factors up to O(103)

 \square Sensitivities down to $\textbf{10}^{-9}$ in all modes including τ modes

Plus (not covered in this talk; other LoIs):

- Potential for very precise $\sin^2\theta_W$ determination via τ polarisation measurement
- Hadronic branching ratios and spectral functions, α_s , ν_{τ} mass, ...
- Improve Lepton universality test by 1 2 orders of magnitude down to $O(10^{-5} 10^{-4})$ level
 - \square Substantial improvement in τ lifetime
 - **□** Substantial improvement in **τ (leptonic) branching fractions** (virtually no progress since LEP)
 - \Box Possibly substantial improvement) of τ mass (mass scale from 10⁹ Z \rightarrow J/ ψ X \rightarrow $\mu\mu$ X)

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce 1.7 x 10¹¹ τ⁺τ⁻ pairs
- Statistics comparable to (factor ~3 higher) Belle2 projection; higher boost (γ=25)
 Boost is advantageous for many studies
- Searches for lepton flavour violating τ decays; sensitivites comparable to Bellez
 - □ For two benchmark studies, range from ≤ 10⁻¹⁰ to
 ☑ Many more studied to be pursued
- Improved sensitivity to lepton flavour violatin
 Sensitivities down to 10⁻⁹ in all modes including τ

Plus (not covered in this talk; other LoIs):

- Potential for very precise sin²θ_W determination
- Hadronic branching ratios and spectral function
- ♦ Improve Lepton universality test by 1 2 order
 - \Box Substantial improvement in τ lifetime.
 - Substantial improvement in τ (leptonic)
 - Possibly substantial improvement) of τ mass (ma

Detector requirements

Precision τ physics sets very strong detector requirements; constitutes a good benchmark

Vertexing

 \square Lifetime measurement to 10⁻⁴ corresponds to 0.22 μm flight distance

Tracking

- □ Two (or rather multi) track separation: measure 3-, 5-, 7-, and perhaps even 9-prong decays
- Extremely good control of momentum and mass scale
 - * τ mass measurement (scale from ~10⁹ J/psi from Z decays? $\delta m/m \simeq 2$ ppm)
 - * Sensitivity of search for flavour violating Z decays, e.g. Z $\rightarrow \mu\tau$, scales linearly in momentum resolution at 45.6 GeV
- Low material budget: Minimize confusion from hadronic interaction in material

Calorimetry

- **□** Clean γ and π^{o} reconstruction from 0.2 to 45 GeV is key to precison τ physics from Z decays
- **□** Collimated topologies: Important to be able to separate γs from closelying hadronic showers

PID

- \Box Necessary if one desires to separate $\pi/K \tau$ -decay modes (o 45 GeV momentum range)
- **Redundancy**: Provides valuable handle to create test samples for study of calorimetry

Detector requirements

Precision **T** physics sets very strong detector requirements: constitutes a good benchmark

- With its TeraZ programme, FCC-ee will be a phenomenal factory for the production of Z bosons and heavy flavour including τ leptons
- **T** Unprecedented sensitivity to CLVF and to τ lepton properties
 - Not obvious that an "off-the-shelf" e+e- Higgs-factory detector design would be optimal to beat minimize systematics
 - Now, is the time to develop the precise detector requirements and to work on the optimisation of the detector design
 - International participation welcome !

Calorimetry

• P

 \square Clean γ and π^o reconstruction from 0.2 to 45 GeV is key to precison τ physics from Z decays

<u>Repository of all FCC Snowmass Lols</u>

• Next event: <u>4th FCC Physics and Experiments Workshop</u>, Nov 9-13

Redundancy: Provides valuable handle to create test samples for study of calorimetry

ntum

ers

Extra Slides

Snowmass, Rare / Precise

$\tau \to \mu \gamma$ Study – Check of method

Cross check: Perform similar study at B-factory, $\sqrt{s} = 10.6$ GeV, 50 ab⁻¹ a Again use 5 x 10⁸ events e⁺e⁻ \rightarrow Z \rightarrow $\tau^{+}\tau^{-}(\gamma) \rightarrow (\mu^{+}\nu\nu)(\mu^{-}\nu\nu)(\gamma)$

From this study, estimated limit: **1.9 x 10⁻⁹** Compares well to projection from "Belle II Physics Book": 1-3 x 10⁻⁹

Mogens Dam / NBI Copenhagen

02/10/2020