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Neutron Target Scattering Kinematics
[10 keV] 104
Using Neutrons of known energy significantly
decrease systematics in calibrations
- Monoenergetic source
- ToF (for lower energies)

Monoenergetic neutrons enable the deposited
energy to be known on an event-by-event basis

(assuming scattering angle also measured) %
. §e,
Scattering angle measurement: Q
-for large detectors, can be performed with the 'g
target mass (LUX/LZ) Q
-for small detectors, requires separate backing %
detector (perhaps more the model for <GeV 3

detectors) E 10-1
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Neutron energy selection:

-depends on scattering energy of interest and
target mass

-< GeV pushes to lower and lower neutron
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p-Accelerator on 7Li Target

Li(p,n)"Be

Quasi-monoenergetic neutrons,
energy set by incident proton energy

Requires 2-2.5 MeV protons
(dedicated accelerator facility)

Endothermic so allows effective
tuning of n energy in range
500 keV — 1.5 MeV
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FIG. 1.

ARIS / Agnes et al. PhysRevD97,112005 (2018)

Picture of the ARIS setup in the LICORNE hall.
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DD and DT neutron generators

Portable mono-energetic high intensity neutron
generators

- Very low associated gamma yields

- Brem x-rays blocked with few mm of Pb

DT KE n =14 MeV
- Insitu. Used to probe NR regime relevant
for recoils predicted in Effective Field
Theory (EFT) interactions
- e.g. Xe Max Recoil 430 keVnr

DD KE n = 2.45 MeV
- In situ. Used to probe NR regime for
regular and low mass (<GeV) DM
- Used to measure Xe Recoils
0.3 keVnr - 75 keVnr

Great practical benefits from being both portable
and pulsable.

Qy [electron / keVnr]

Adelphi DD Accelerator LUX Experiment, Huang / Verbus (Brown University)
arXiv:1608.05381 / arXiv:1608.05309 / Nucl. Instrum. Methods A851, 68 (2017)
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Neutron Reflectors (Scintillators)

Tagged Neutrons from Portable DD Source

Reflecting the mono-energetic 2.45 MeV neutron beam by
a fixed angle allows lower energy tuned neutron source

- D-Reflector: KE

n 350 keV high intensity demonstrated

- H-Reflector: Continuum source KE n 1-100 keV
Method has very low x-ray / gamma contamination
(<1% of n flux, after 2 mm of Pb)

Reflector can be active scintillator: e.g. NE301 (CH) or NE315 (D loaded)

This allows individual

tagging of each neutron

- ToF is directly available (100 keV => ToF 0.23 us/m, 1 keV => 2.3 us/m)
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Photo-neutron sources

Gammal/n process can eject quasi-monoenergetic neutrons from 9Be
nucleus. (requires intense monoenergetic gamma-ray source)
- Monoenergetic neutrons at a kinetic energy of Ey—1.666 MeV, which

allows for great tunability of neutron energies.

- Cross section is ~mb so yields ~ 0.1-1 neutron per 10* gammas

‘Be+7— ®Be+n (Q=—1.667 MeV)

Snell et al. (1950

—a—

88Y.9Be 206B-9Be 1245b-°Be
examples: Neutron energy 160 keV 48 keV 24 keV
Half-life 107 days 6.2 days 60.2 days

(eg: bubble chamber)

no longer monoenergetic)

Calibration still possible in two scenarios:

Scenario 2: significant gamma shielding
(leads to moderation of neutron spectrum,

Challenge: gamma source must be ‘hot’ to produce useful n-flux.

Scenario 1: detector technology of minimal ER response
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Neutron filters

Some nuclei have ‘notches’ in their neutron scattering cross sections,
such that only a quasi-monoenergetic neutron population can leak
through the material.

24keV (Fe) is the easiest practically
2 keV (Sc) is the lowest-energy that is at all practical

The fraction of neutrons that pass through the filter can be quite low; the
traditional neutron source is a reactor.

Current R&D: pairing these filters with other more portable neutron
sources.

1: filtering a photo-neutron source (w/ moderation)
1)  Neutron filter allows neutrons while shielding gammas
2) Completely avoids any higher-energy neutrons, useful for migdal
or technologies without energy info)
Special case: 124SbBe matches Fe filter, Fe here not a n filter but a
gamma blocker only.

2: filtering a DD/DT generator (w/moderation)
Benefit: can be pulsed to reduce backgrounds

Filtered heam intensity, au.

Neutron Spectra for Various Filters, Gritzay et al, 2020
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Non-monoenergetic neutrons (energy from Time of Flight only)

A spallation neutron source can provide
1)  ashort-duration pulse of large neutron flux ~ 2) experiment sites at long distances (10s of meters)
This pairing gives time-of-flight methods great power.

TOF methods eliminate the requirement of a mono-energetic source.
(Or put differently: the neutron source is monoenergetic within each TOF time-bin)

It is very difficult to make mono-energetic neutron sources with E<keV...
... it's possible these non-monoenergetic TOF techniques are the long-term future of neutron calibrations
(if neutrons of 100eV, 10eV, 1eV are required)

Primary challenge: wide energy flux, many neutrons far from the useful energy.
Required R&D: shaping the n spectrum to specific useful windows (using choppers, moderator/capture materials, etc.)
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Backing detectors for low energy neutrons neutron capture cross sections—;
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Many <GeV dark matter experiments will be small, requiring a
separate detector for measuring the neutron scattering angle.
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Capture introduces a time delay (order-ps and up) which damages the
usefulness of time-of-flight techniques.
example: finely partitioned B-doped liq. scintillator

Capture requires doping with specific capture isotopes (6Li, 10B, 3He,
etc.) which increases cost and decreases material choices.
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example, some bolometric techniques). The slower the technology
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Nuclear Recoils from Coherent Gamma Scattering

Photonuclear, or Coherent Gamma-ray Nuclear scattering can also
be exploited at the lowest recoil energies. gamma

W /-\/\/\
At lowest energies, dominated by Rayleigh scattering

(gamma scatters off all the electrons of the atom as a whole).
Cross section scales as Z"3.

Example kinematics: 6]2 (zpy sin % 9)2
Target (gamma energy) 15 degree recoill Recoil endpoint E, = > = 2
[lab frame] M M
4He (and 60 keV gamma) | 32 meV 1.9eV
Xe (and 9 MeV gamma) 23 eV 1.3 keV 10? ! ' 15206 ke\/ gamma on THe
= °1 Recoil angle 15° + 1.5° (o) [
Challenge: separating these useful coherent scatters from the 5 11;1’ gog‘p“’: ]
. . . . Ee) 1 T oheren 3
dominant gamma processes (eg compton scattering). Possible in < 102] E
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https://indico.physics.lbl.gov/event/298/contributions/735/attachments/671/734/Coherent_scattering3.pdf

Summary
SNOWMASS LOI: Nuclear Recoil Calibration Techniques for Dark Matter and Neutrino Experiments (link)

- Broad array of existing methods (for scattering energies from keV down to meV scale)
- Techniques have a various of pros and cons:
- portable vs facility-based
- mono-energetic vs time-of-flight
- pulsed vs constant-flux
- Different levels of neutron spectral purity / competing gamma backgrounds from source
- As detector thresholds push lower for sub-GeV DM, NR calibration techniques need to keep pace

- We will likely continue to add to the list of techniques. Important and active region of R&D.
- Important to demonstrate their effectiveness (as well as simulations)
- Understand neutron spectrum (and ToF) properties - what fraction of total neutron flux is in useful range?
- What unwanted source-related gamma signals compete for live time in detector being calibrated?

- Need to better define requirements for DM & neutrino nuclear recoil calibrations

- Identify and Propose dedicated facilities including calibrations with dedicated detectors

- Detailed studies / optimized geometries / high stats - no fear of activation of search experiment
- Techniques for in situ calibrations (of live dark matter and neutrino experiments, underground)

- Important to show that specific event searches have quoted response characteristics

- Especially true for detectors that are exploiting sensitivity in lowest energy bins where start-to-end efficiency should be demonstrated
(includes yields of signal quanta, their detection, and their treatment in analysis pipeline)
- Lower systematic uncertainties in calibration source, ensures detector response can be unambiguously determined (minimize correlated errors and
strong simulation dependencies)
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