UPC physics in Heavy-ion collisions (EFO7)

Mariusz Przybycien (AGH
Zhangbu Xu (BNL)
Jian Zhou (SDU)

T R
motion
& 1.2} Antishadowing

I Shadowing

effect |

S TS T/ .




EFO07: Ultra-Peripheral Collisions in Heavy-lon
Physics

Jaroslav Adam?, Carlos Bertulani'2, James D. Brandenburg?, Frank Geurts’, Victor P.
Goncalves”, Yoshitaka Hatta?, Yongsun Kim'?, Spencer R. Klein*, Cong Li*, Wei Li’,
Michael Murray®, Joakim Nystrand®, Mariusz Przybycien', John P. Ralston®, Christophe
Royon®, Lijuan Ruan?, Bjoern Schenke?, Janet Seger'?, Peter Steinberg?, Daniel Tapia
Takaki®, Zebo Tang'!, Zhoudunming Tu?, Ralf Ulrich'¢, Ramona Vogt*, Bowen Xiao®,
Zhangbu Xu?®, Shuai Yang’, Wangmei Zha'', Jian Zhou**, and Ya-jin Zhou®

'AGH University of Science and Technology, Cracow, 30-059, Poland

*Physics Deparment, Brookhaven National Laboratory, Upton, NY 11973, USA

3Ke'y Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdisciplinary Science,
Shandong University (QingDao), Shandong 266237, China

*Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA
*Universidade Federal de Pelotas, Pelotas - RS, 96010-900, Brazil

“Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA

7T.W. Bonner Nuclear Laboratory, Rice University, Houston, TX 77005, USA

$Physics Department, Central China Normal University, Wuhan, Hubei 430079, China

“Department of Physics and Technology, University of Bergen, Bergen, Norway

1Physics Department, Creighton University, Omaha 68178, NE, USA

I Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China
12Department of Physics and Astronomy, Texas AM University-Commerce, Commerce, TX

1*Physics department Sejong University, Seoul, South Korea

4KIT, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

*Coordinators for this LOI

ABSTRACT

Ultraperipheral collisions (UPCs) of heavy ions at RHIC and LHC offer great opportunities to study strong field QED,
EM/color charge fluctuations, collective phenomenon, electromagnetic properties of QGP, search BSM physics,
and explore 3D nuclear structure with high luminosity beams of linearly polarized photons from Lorentz-boosted
Coulomb field. Among these exciting directions of UPC studies, we select a few important new developments and
emphasize on the polarization dependent effects in photon-photon processes and photon-nuclear interactions,
and the processes as an electromagnetic probe of QGP properties.
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1 Photon-nucleus/nucleon interactions

1.1 Linearly polarized photon-gluon collisions

The diffractive photoproduction of vector mesons at RHIC and LHC can probe the gluon momentum and space
distribution inside nuclei and is the closest to the gluon imagining an electron-ion collider will perform in the near
future. The diffractive vector meson production in UPCs*!2 is the dominant channel of photon-nuclear interactions.

Recent experimental studies have probed nuclear effects such as gluon shadowing in an unprecedented way, but
more systematic studies are needed to address several open questions'*2*, For example, there are still uncertainties

hindening the extraction of the gluon distribution at a quantative level due to the uncertainty of the photon source
generated by the heavy-ion Coulomb field, the separation of coherent diffractive production from the incoherent

process, and a model with matching precision on the data. One alternative is to address these aspects from a new
angle with the polanzation dependent observables in UPCs. The significant cos2¢ and cos4¢ modulations in

diffractive p® production have been reported by STAR collaboration®®. A recent analysis™ shows that the cos2¢
asymmetry essentially results from the linearly polarization of incident coherent photons. The obtained transverse

momentum dependent cos2¢ asymmetry has a distinctive diffractive pattern which is sensitive to the nuclear
geometry, the quantum interference effect’®2#, and the production mechanism (coherent/incoherent). To reproduce

such a diffractive pattern, it is crucial to derive a joint impact parameter and transverse momentum dependent cross

sections, which is also important for reliably extracting the transverse spatial distribution of gluons inside a nucleus.
Similar measurements of azimuthal harmonic distributions of J/y at RHIC and LHC are feasible and will allow

more reliable comparison to the QCD calculations. In addition, more experimental measurements and theoretical
developments on the Fourier transformation of the gluon distribution with multiple azimuthal harmonics with the

linearly polarized photon as a probe are required.
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Imaging the nucleus with high-energy photons

Klein and Mantysaari, Nature Reviews Physics 1 (2019) 662
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Figure 5: (Colour online). Cross section for the coherent photoproduction of p? vector mesons in Pb-Pb UPC as
a function of rapidity for no forward-neutron selection (top left), and for the OnOn (top right), OnXn (bottom left)
and XnXn (bottom right) classes. The lines show the predictions of the different models described in the text.

ALICE, JHEPOG6 (2020) 35

¥ STAR focus: STAR uses photons to probe the structure of gold nuclei

The STAR Collaboration has recently published “Coherent diffractive photoproduction of QO mesons on gold nuclei at 200

This paper reports on a special type of heavy-ion interaction, where the ions do not physically collide, but interact via a long-
range electromagnetic interaction, whereby photons emitted by one nucleus probe the structure of the other nucleus. The
photons come from the electric and magnetic fields carried by the highly charged nuclei. The electric fields radiate radially
outward, while magnetic fields circle the ion’s trajectory. The two fields are perpendicular, just like those of a photon, and
they can be treated as such.

In the reaction considered here, the photon may be thought of as briefly fluctuating to a quark-antiquark pair, as allowed by
the Heisenberg uncertainty principle. Quark-antiquark pairs are mesons; this photon fluctuation acts like a meson with the
same quantum numbers (spin one and negative parity) as the photon. These virtual (short-lived) mesons can scatter from the
target nucleus, and emerge as real mesons.
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Left: The cross-section as a function of t, the squared momentum transfer to the nucleus. The dips and peaks are a diffraction
pattern, akin to the pattern made by a 2-slit interferometer. ‘XnXn’ and ‘Inln’ are two different STAR data samples.The inset
shows the distribution for very small momentum transfers. Right: The two-dimensional Fourier transform of the left panel,
showing the density of the interaction sites in the nucleus, as a function of transverse distance from its center. This is a map of
where the mesons interacted in the target. Although there is considerable systematic uncertainty (the blue region) near the
center of the target, the edges of the nuclei are well defined.

The photons scatter equally from protons and neutrons. But, we can’t tell which proton or neutron an individual meson
scattered from. In quantum mechanics, we add the amplitudes to scatter from each target meson. The amplitude is a complex
number with a phase which depends on the meson momentum and the position of the target nucleon. By studying how the
scattering probability varies with the momentum transfer to the nucleus, we can image the matter distribution in the target.
The left panel shows the scattering probability as a function of the square of the momentum transfer (‘t’) for two different
STAR data samples. The dips are due to diffraction, like the fringes seen in the classic two-slit diffraction pattern, but with a
circular target.
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1.2 Ultraperipheral pA collisions

The 3D gluonic tomography of a nucleon can be studied before the operation of EIC in ultraperipheral pA collisions,
where the photons generated from the Lorentz-boosted field from a nucleus interact with the gluons inside the
nucleon. It has been proposed to constrain the gluon Wigner distribution in a nucleon by measuring the exclusive
diffractive dijet production process in UPCs at RHIC, LHC? as well as at EIC**, In particular, the elliptical gluon
Wigner distribution®” describing the correlation between b, and the gluon transverse momentum can be accessed
via a cos 2¢p azimuthal asymmetry. An unexpectedly large cos2¢ asymmetry in diffractive dijet production has been
observed in a recent measurement by the CMS collaboration®* in AA collisions, whose quantitative connection
to the elliptic gluon Wigner distribution requires further exploration. In addition to the nucleon 3D imaging, the
proton mass decomposition also can be addressed in ultraperipheral pA collisions™ similar to that in ep collisions™®.
One of the most interesting contributions to the intrinsic proton mass is the trace anomaly, or the gluon condensate
contribution which can be probed via diffractive J /¥ production in ultraperipheral pA collisions where the nucleus
merely acts as a source of quasi-real photons. The challenge is that one has to detect J/y in the very forward,
low transverse momentum region. This may be possible after the forward upgrades at RHIC and LHC. A unique
capability to probe the generalized gluon distribution function (GPD E,) with the collider mode at RHIC and the

fixed-target mode at the LHC is to use the polarized proton source in ultra-peripheral pA collisions®’—°.
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Polarized target UPCs - Generalized Parton Distributions
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1.3 Photoproduction in non-UPC heavy-ion collisions

The ALICE Collaboration at the LHC has pioneered the experimental measurements of the photoproduction of J/y
at low transverse momentum in non-UPC heavy-ion collisions*’, accompanying the more violent hadronic collisions.

More detailed study of the diffractive |¢| distribution by the STAR Collaboration at RHIC*' has shown that the
lt| distribution is more consistent with the coherent process than the incoherent process. Although models*>*3
incorporating different partial coherent photon and nuclear interactions could explain the yields, it remains unclear
how the coherent process happens and whether final-state effects play any role**. Resolving this puzzle with high
statistics data and detailed |¢| distributions at different centralities at RHIC and the LHC may be important for
understanding what defines the coherence of the photoproduction and how vector mesons are formed in the process.
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https://doi.org/10.1103/PhysRevLett.123.132302 (2019). https://arxiv.org/abs/1904.11658.

42. Zha, W. et al. Coherent J/y photoproduction in hadronic heavy-ion collisions. Phys. Rev. C 97, 044910, DOL:
https://doi.org/10.1103/PhysRevC.97.044910 (2018).
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https://arxiv.org/abs/1710.00332.
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J/Psi photoproduction in A+A collisions

ALICE observed J/Psi production at low-pt in non-UPC events;
STAR shows that the t distribution is consistent with photoproduction.

How does this happen?
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2 Photon-photon to dilepton process

2.1 Extreme QED field

It was perceived that photons participating in UPC events are quasi-real with transverse-momentumk, — 1/R (30
MeV/c) reflecting the virtuality and uncertainty principle of their origin. This led to the assumptions in models
employing the equivalent photon approximation (EPA)*¥ that the dilepton initial transverse momentum does not
depend on impact parameter and the transverse space coordinates where the pair are created are randomly distributed
based on the same principles. The new measurements of centrality dependence and azimuthal distributions at
RHIC'-#5-30 and LHC?3'-34 have shown that the photons behave like real photons in all observables. The models
and theories have demonstrated that the correction to the real photon approximation is suppressed at the order of
1/7* even in the transverse momentum distribution of the pairs. The discovery of the Breit-Wheeler process and
the utilization of linearly polarized photons in UPCs are conceptually and experimentally highly nontrivial™®. With
future high statistics data with larger acceptance in UPC at RHIC and LHC, we can explore the phase space of photon
collisions in transverse momentum, rapidity and momentum-space-spin correlations in extreme QED fields™ .
More importantly, these measurements provide a precision calibration necessary for the photons as sources for the
photonuclear processes discussed in the previous section.

The lowest order QED calculation®*' of lepton pair production via photon-photon fusion process with the
EPA as the input for photon flux can describe the unpolarized cross section measured by RHIC and LHC** e
quite well. It was recently realized that the coherent photons are highly linearly polarized with the polarization
vector being parallel to its transverse momentum direction. A sizable cos4¢ azimuthal asymmetry induced by
linearly polarized coherent photons was observed in a STAR measurement™. A remarkable agreement between
the computed asymmetry(16.5%)%" and the measured asymmetry(16.8%=2.5%) in UPCs has been reached.
With it being experimentally confirmed, the linearly polarized photon beam in UPCs provides us a new tool to
estimate the off-shellness of the coherent photons participating in the Breit-Wheeler process and explore novel QCD
phenomenology.

The extreme EM field in UPCs also facilitates searches for the elusive Coulomb correction®® %6, The total cross
section of lepton pair production in UPCs is predicted to be reduced by the Coulomb correction. However, there
is no clear evidence of the Coulomb correction found in heavy ion collisions so far®>-%6, The multiple coherent
Coulomb rescattering is suppressed by the powers of q2l /mZ.. To maximally enhance the Coulomb correction,
pushing the measurement to the lower invariant mass region is required, which should be feasible at RHIC and
LHC with forward instrumentation. It would be even more optimal to study Coulomb correction via a polarization
dependent observable, for instance cos4¢ asymmetry discussed above, which does not depend on the uncertainty of
the heavy ion beam luminosity.
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Old Question with new spin

PHYSICAL REVIEW LETTERS 121, 132301 (2018)

® (Received 6 June 2018; revised manuscript received 30 August 2018; published 25 September 2018)

We report first measurements of e* e~ pair production in the mass region 0.4 < M,, < 2.6 GeV/c? at
low transverse momentum (pr < 0.15 GeV/c¢) in noncentral Au + Au collisions at /Sy = 200 GeV and
U + U collisions at /sy = 193 GeV. Significant enhancement factors, expressed as ratios of data over
known hadronic contributions, are observed in the 40%-80% centrality of these collisions. The excess
yields peak distinctly at low pr with a width (1/(p3)) between 40 and 60 MeV/c. The absolute cross
section of the excess depends weakly on centrality, while those from a theoretical model calculation
incorporating an in-medium broadened p spectral function and radiation from a quark gluon plasma or
hadronic cocktail contributions increase dramatically with an increasing number of participant nucleons.
Model calculations of photon-photon interactions generated by the initial projectile and target nuclei
describe the observed excess yields but fail to reproduce the p7 distributions.

DOI: 10.1103/PhysRevLett.121.132301
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This Letter presents a measurement of yy — ™y~ production in Pb+Pb collisions recorded
by the ATLAS detector at the Large Hadron Collider at \/syy = 5.02 TeV with an integrated
luminosity of 0.49 nb™!. The azimuthal angle and transverse momentum correlations between
the muons are measured as a function of collision centrality. The muon pairs are produced
from yy through the interaction of the large electromagnetic fields of the nuclei. The
contribution from background sources of muon pairs is removed using a template fit method.
In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with
previous measurements of muon pair production in ultra-peripheral collisions. The angular
correlations are observed to broaden significantly in central collisions. The modifications are
qualitatively consistent with rescattering of the muons while passing through the hot matter
produced in the collision.
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Initial Transverse Momentum Broadening
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we can afford many mistakes in the search.
The main thing is to make them as fast as possible.
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CMS Abstract: “This observation demonstrates the transverse momentum

Photon TMD in UPC

and energy of photons emitted from relativistic ions have impact

parameter dependence. These results constrain precision modeling of
initial photon-induced interactions in ultra-peripheral collisions. They
also provide a controllable baseline to search for possible final-state
effects on lepton pairs resulting from the production of quark-gluon

plasma in hadronic heavy ion collisions.”
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Quite a few techniques
used in QCD

can be used in
strong-field QED as well

Understanding the QED is
also important for
guantitative extraction

of the photoproduction

Y. Hatta

Wigner Distributions
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Observables of photon linear polarization

* Magnetic field generated by the
heavy-ions are circular around
the nucleus

* Photons are linearly polarized
along the transverse radial
direction

* There is a significant momentum:

space correlation of photon field
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2.2 Dileptons as a probe in heavy ion collisions:

The comprehensive understanding of pure electromagnetic lepton pair production is not only important for probing
extreme electromagnetic fields, but also interesting for studying the EM properties of QGP. For example, the
significant pair transverse momentum g, broadening effect at different impact parameters found by the STAR*%-0,
ATLAS™ and CMS>? collaborations has triggered quite an amount of theoretical efforts aimed at understanding if
this effect results from the initial QED field strength, or is caused by the final state medium effect. The detailed
comparison between theory/model calculations and experimental data appears to be in favor of the initial state
effect?6-47.96.67.6% though there is some room left for the final state effect, such as the trapped magnetic field®
and multiple EM scattering in QGP. Since such an impact-parameter sensitive observable is implicitly dependent
on the photon Wigner distribution, it can serve as a clean testing ground for developing the QCD factorization
formalism in terms of quark and gluon Wigner functions, which play a central role in exploring the 3D structure of
nucleons/nuclei in the forthcoming EIC era. Another interesting development along this line is the prediction of a
sizable v4 anisotropic distribution with respect to the reaction plane '” in lepton pair production in non-central heavy
ion collisions. This EM vy anisotropy is purely generated by the initial EM field configuration, while the EM »;
anisotropy is absent. This unique prediction, if confirmed from the experiments, shall provide a crucial handle on

the production mechanism for dileptons in two photon processes in non-UPC collisions.
67. Zha, W., Ruan, L., Tang, Z., Xu, Z. & Yang, S. Coherent lepton pair production in hadronic heavy ion

50. STAR Collaboration, J., Adam er al. Probing Extreme Electromagnetic Fields with the Breit-Wheeler Process. collisions. Phys. Let.. B781, 182-186, DOL: https://doi.org/10.1016/j.physletb.2018.04.006 (2018). https:
(2019). https://arxiv.org/abs/1910.12400. [farxiv.org/abs/1804.01813.

51. ATLAS Collaboration. Measurement of non-exclusive dimuon pairs produced via yy scattering in Pb+Pb  68. Zha, W., Brandenburg, J. D., Tang, Z. & Xu, Z. Initial transverse-momentum broadening of Breit-Wheeler
collisions at y/SNN = 3.02 TeV with the ATLAS detector. ATLAS-CONF-2019-051. (2019). https://inspirchep. process in relativistic heavy-ion collisions. Phys. Lert. B 800, 135089, DOI https://doi.org/10.1016/j.physletb.
net/literature/ 1762955. 2019.135089 (2020). https/arxiv.org/abs/1812.02820.
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Initial broadening from Breit-Wheeler
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Are there final-state QED effects?

Precision data with
QED theory comparisons:

Both on-going at LHC and RHIC

How about azimuthal anisotropy

relative to reaction plane?

-
o

AusAu @ |5, =200 GeV

G5 C
3k Coh . # %
~ Coherent yy — e'e~ ]
= 65 2 45 |:|Pasu.1aaatermm
—~ F 2
- 80 ' 0[ 40 Projection
E C UPC ' 60-80% Central g (]
55 [i e =0 @) ] t 3 ®E ___- superChioPredicion —————————
- : £ 2
o i —comeen [
3 ' 2
= :
46 ’ 0 e ___
: - i ————
s anl : % Past Meazurementz 15
C . .
- o 1
I E I Projection
= ' - QED yy — &'~
w-l 1 Il L1l Il : ll L.l l L1l Il 1 Il L1l Il 1 ll L.l l L1l Il 0 l
08 08 1 12 14 16 18 2 UPC 80-80%

M (GeV/c*)

Figure 57: (Color online) Projections for measurements of the vy — e*e™ process in peripheral

and ultra-peripheral collisions. Left: The ,/ (p%) of di-electron pairs within the fiducial acceptance

as a function of pair mass, M., for 60 —80% central and ultra-peripheral Au+Au collisions at /SNN
= 200 GeV. Right: The projection of the cos 4A¢ measurement for both peripheral (60 —80%) and
ultra-peripheral collisions.

pr broadening and azimuthal correlations of e*e" pairs sensitive to electro-magnetic (EM)

STAR Beam Use Request (2023-2025): field;

https://drupal.star.bnl.gov/STAR/syste

m/files/BUR2020 final.pdf

Impact parameter dependence of transverse momentum distribution of EM production is the
key component to describe data.

Is there a sensitivity to final magnetic field in QGP?

Precise measurement of py broadening and angular correlation will tell at >3¢ for each 21

observable.



Semi-coherent photon collisions
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FIG. 3: (Color online)The square of the form factors plotted
2 ) on a logarithmic scale. The (blue) dashed line corresponds
1 e to smooth Woods-Saxon charge distribution, the (red) con-
2 )
[F (k)" = 72 Z+2 Z Z cos (k(zm — x"))}ll) tinuous line corresponds to resolved discrete protons (but not
m=1 n=1

quarks), as explained in the text.)
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Lols related to UPC in Heavy-ion collisions

@ Three Lols submitted to EFO7:
e Production of Charged BSM Particles at Future Heavy-lon Colliders Via

Photon-Photon Fusion,

Authors: Laura Jeanty, Jenna Kishinevsky, Lawrance Lee.

The Authors point out the possibility of the study of the production of ALP and other
BSM particles in photon-photon fusion. Their plans include studies of the potential
sensitivity of UPCs to higgsino and chargino production in different configurations of
HI collisions, together with estimation of backgrounds.

New Phenomena Searches in Heavy lon Collisions,

Coordinators of this Lol: Marco Drewes, David d'Enterria.

In the part of the Lol related to UPC, the Authors outline possible measurements of
particle production in photon-photon collisions, including new particles.
Ultra-Peripheral Collisions in Heavy-lonPhysics,

Coordinators of the Lol: Mariusz Przybycien, Zhangbu Xu and Jian Zhou.

To be discussed later.

... and one more submitted to EF06:

New opportunities at the photon energy frontier,

Coordinators of the Lol: Spencer Klein and Daniel Tapia Takaki.

To be discussed later.
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Summary

* Exciting new topics at UPC in the * A group discussion in UPC
last 2 years (Both RHIC and LHC) community

* Exploring precision test of strong  EFO7 UPC Lol on overleaf (open
field QED to everyone)

* Possible use as probe of QGP * Will expand to a document with
electromagnetic properties writing assignments to experts

* Imaging of nucleus with high- * Establish discussion and merging
energy photons: precision data scheme with EFO6 UPC

and quantitative extraction * Expand to include other topics
* Polarization as a tool: GPD/TMD (not too late still)
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