Discussion for the UPC contribution paper for Snowmass 2021 – EF06

Spencer Klein and Daniel Tapia Takaki

October 13, 2020

Plan of this talk

- Report on the submitted Letter of Interest by the community
 - Review recent results and discussion of prospects for future measurements
- Discussion for the outline of the contributed paper

Snowmass2021 - Letter of Interest

New opportunities at the photon energy frontier

Coordinators of this LoI: Spencer Klein (LBNL)¹ and Daniel Tapia Takaki (U. Kansas)²

Authors: Jaroslav Adam⁹, Christine Aidala⁴⁰, Aaron Angerami³, Benjamin Audurier⁴⁷, Carlos Bertulani¹⁷, Christian Bierlich²⁴, Boris Blok³⁵, James Daniel Brandenburg⁹, Stanley Brodsky³⁴, Aleksandr Bylinkin², Veronica Canoa Roman⁴², Francesco Giovanni Celiberto⁵², Jan Cepila⁰, Grigorios Chachamis⁴⁶, Brian Cole²², Guillermo Contreras⁰, David d'Enterria¹⁴, Adrian Dumitru²⁸, Arturo Fernández Téllez²⁰, Leonid Frankfurt^{10,50}, Maria Beatriz Gay Ducati¹⁹, Frank Geurts²³, Gustavo Gil da Silveira¹¹, Francesco Giuli²⁶, Victor P. Goncalves¹⁶ Iwona Grabowska-Bold⁵, Vadim Guzey¹², Lucian Harland-Lang³² Martin Hentschinski²⁹, T. J. Hobbs²⁵, Jamal Jalilian-Marian²⁸ Valery A. Khoze¹⁵, Yongsun Kim³⁶, Spencer R. Klein¹, Simon Knapen²¹, Mariola Kłusek-Gawenda⁴⁸, Michal Krelina⁰, Evgeny Kryshen¹², Tuomas Lappi³⁸, Constantin Loizides⁷, Agnieszka Luszczak⁴⁴, Magno Machado³⁹, Heikki Mäntysaari³⁸, Daniel Martins⁷, Ronan McNulty⁴⁵, Michael Murray², Jan Nemchik⁰, Jacquelyn Noronha-Hostler³³, Joakim Nystrand⁶, Alessandro Papa⁵¹, Bernard Pire³⁷, Mateusz Ploskon¹ Marius Przybycien⁵, John P. Ralston², Patricia Rebello Teles¹⁸ Christophe Royon², Björn Schenke⁹, William Schmidke⁹, Janet Seger⁸, Anna Stasto¹⁰, Peter Steinberg⁹, Mark Strikman¹⁰, Antoni Szczurek⁴⁸, Lech Szymanowski³¹, Daniel Tapia Takaki², Ralf Ulrich⁴⁹, Orlando Villalobos Baillie⁴¹, Ramona Vogt^{3,4}, Samuel Wallon³⁰, Michael Winn⁴³, Keping Xie²⁷, Zhangbu Xu⁹, Shuai Yang²³, Mikhail Zhalov¹², and Jian Zhou¹³

Structure of the Lol

- UPCs as the energy frontier
- Photoproduction and parton distributions

Many of these topics discussed in Z. Citron *et al.*

Report from Working Group 5 : Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

- Light-by-light scattering, W pair and dilepton production
- Strong fields, quantum correlations and quantum tomography
- UPCs at the FCC and synergies with future colliders

Inclusive dijet photoproduction

Fairly direct probe of the gluon distribution

NLO pQCD cross section of dijet photoproduction in PbPb UPCs & preliminary ATLAS data

V. Guzey Phys.Part.Nucl.Lett. 16 (2019) 5, 498-502

Experimental evidence of nuclear effects in the Pb at high energies, low Bjorken-x

Projections for nuclear suppression factor Vector meson photoproduction

Pseudodata points are derived from EPS09-based photoproduction

Incoherent production & fluctuations

ALICE JHEP 1509 (2015) 095

L. Frankfurt et al. Phys.Lett. B752 (2016) 51-58

Both ALICE and STAR find measured cross section ~40% lower than predicted by Glauber,although works fine at fixedtarget experiments

Nuclei does not behave like individual nucleons

t-dependence gives access to the transverse profile of the target

In UPC can study spatial distribution of target scatters in nucleus

Onset of gluon saturation effect

Energy and t dependence of UPC Rho0

New measurements with UPCs at the LHC

- Charm photoproduction
- Event-by-event fluctuations in the nuclear configuration using incoherent photoproduction
- Spatial distribution of target scatters in nucleus
- Perturbative Pomeron dynamics
- Color fluctuations in the photon
- Gluonic Sivers function
- Search for the Odderon

From theory

• Next-to-leading (NLO) order calculations for UPC processes: one of the future directions of the theoretical program

Sub-Eikonal Frontier

• Connecting small and large x

Nice summary of recent theory prospects in M. Sievert talk

https://indico.cern.ch/event/751767/contributions/3840641/at tachments/2048640/3433170/Sievert_Plenary.pdf

Two-photo physics, LbyL scattering

- Two-photon reactions are sensitive to many beyond-standard-model processes
- The subprocess γγ → γγ proceeds only via a charged-particle box diagram. The cross section is sensitive to all charged particles, including BSM particles such as vector fermions, GeV- mass axion-like particles (ALPs) and magnetic monopoles. The reaction also probes non-linear (BSM) corrections to electromagnetism.
 - ATLAS and CMS have recently observed this process
- Limits on anomalous quartic gauge couplings

Light-by-light scattering

Exclusion limits on ALP-photon coupling $(1/\Lambda a)$ vs. ALP mass, from light-by-light scattering and other processes

New measurements on two-photon physics

- Extend results
- Probe low-mass light-by-light scattering using ALICE and LHCb (m <5 Gev)
- $\gamma\gamma \rightarrow \tau\tau$
- Two-photoproduction of heavy flavors
- Search for pentaquarks, tretaquarks and other exotica

Strong fields, Quantum correlations and quantum tomography

- Very strong fields to explore reactions involving multiple photon exchange
- EPR (Einstein-Podolsky-Rosen)-type experiments
- Quantum tomography techniques can probe quantum correlations and entanglement

New detectors. For example, ALICE FoCal for Run 4 (2026)

Observables:

- π⁰
- Direct (isolated) photons
- Jets

Advantage in ALICE: forward region not instrumented; 'unobstructed' view of interaction point

https://cds.cern.ch/record/2696471

UPCs at the FCC and synergies with future colliders

- FCC and proposed LHeC probing higher energies than LHC:
 - Extensive BSM physics
 - Top photoproduction
 - Two-photon production of the Higgs

Outline of contributed paper on UPC

- Introduction
- Strategies for observing nonlinear and gluon saturation effects in photon – nucleus scattering
- QCD dynamics using photonuclear processes
- Quantum mechanics effects and UPCs
- Two-photon physics at the LHC
- Electromagnetic effects in peripheral events
- Synergies between UPCs at RHIC and LHC and EIC and beyond

Will work with collaborators and authors of LoI to complete these sections