Inclusive Higgs + jet

Trento Institute for Fundamental Physics and Applications

HAS QCD HADRONIC STRUCTURE AND

EF01 Working Group Meeting - SM21

Francesco Giovanni Celiberto

ECT* Trento & INFN-TIFPA

The Equinoctial

Based on \mathcal{P} [F. G. C., D. Yu. Ivanov, M. M. A. Mohammed, A. Papa [[arXiv:2008.00501](https://arxiv.org/abs/2008.00501)]], to appear in *Eur. Phys. J. C*

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

- \ast
- *
-
- *

Higgs sector(s): properties & production

Higgs sector(s): properties & production

- Key ingredient for differential distributions
- Stringent tests of pQCD \leftrightarrow **resummations**
- Inclusive Higgs \rightarrow hadronic structure (TMD)
- Inclusive Higgs + jet \rightarrow high-energy QCD

TOOP BUT THE MUST COULD BE THE REPORT OF THE COURT OF THE REPORT OF THE COULD BE THE REPORT OF THE COULD BE THE

QCD gluon fusion

Electroweak

- Golden channel to investigate Higgs decays *
- VBF as extractor of *HWW* and *HZZ* couplings
- EWSB and CP studies
- Higgs with associated production of jets

THE MUNICIPAL MORE SERVICE STATES OF THE MUNICIPAL MORE SERVICE STATES OF THE MUNICIPAL MORE SERVICE STATES OF

Higgs sector(s): properties & production

Electroweak

- Key ingredient for differential distributions
- Stringent tests of pQCD \leftrightarrow **resummations**
- Inclusive Higgs \rightarrow hadronic structure (TMD)
- $Inclusive Higgs + jet \rightarrow high-energy QCD$

TOOP BUT THE MUST COULD BE THE REPORT OF THE COURT OF THE REPORT OF THE COULD BE THE REPORT OF THE COULD BE THE

- Golden channel to investigate Higgs decays \ast
- VBF as extractor of *HWW* and *HZZ* couplings
- EWSB and CP studies
- Higgs with associated production of jets

CONTRACT OF A CONTRACT OF A

The high-energy resummation

Inclusive Higgs + jet

300

Convergence of perturbative series spoiled when $\alpha_s \ln(s) \sim 1$

Resummed distributions

Closing

statements

- Enhanced *energy single logs* in fixed-order description of high-energy (HE) collisions
	-
- $All-order\ resummation\ \rightarrow\ \mathbf{BFKL}$ approach at $LLA\colon\ \alpha_s^n\ln(s)^n,\ \text{and\ NLA}\colon\ \alpha_s^{n+1}\ln(s)^n$
- $Golden channels \rightarrow$ diffractive semi-hard reactions: $s \gg \{Q^2\} \gg \Lambda_{QCD}$
- HE resum. \rightarrow essential ingredient to study production mechanisms of particles
- Parton content of proton at small- $x \rightarrow$ BFKL UGD, resummed PDFs, small-*x* TMDs

The high-energy resummation BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup

based on **gluon Reggeization**

 $\alpha_s^n(\ln s)^n$

next-to-leading logarithmic approximation (NLA):

 α_s^{n+1} (ln *s*)^{*n*}

Total cross section for $A + B \rightarrow X$: $\sigma_{AB}(s) = \frac{\Im m_s \{A_{AB}^{AB}\}}{s}$ $\frac{d\mathcal{L}_{AB}f}{dt}$ \Leftarrow **optical theorem**

The BFKL resummation

leading logarithmic approximation (LLA):

BFKL resummation: [V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975, 1976, 1977); Y.Y. Balitskii, L.N. Lipatov (1978)]

 \blacktriangleright *Jm_s* $\{A^{AB}_{AB}$ *AB* factorization:

> convolution of the **Green's function** of two interacting Reggeized gluons with the **impact factors** of the colliding particles

The high-energy resummation BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup

$$
\mathrm{Im}_s\left(\mathcal{A}\right)=\frac{s}{(2\pi)^{D-2}}\!\int\!\frac{d^{D-2}q_1}{\vec{q}_1^{\,2}}\Phi_A(\vec{q}_1,\mathbf{s}_0)\!\int\!\frac{d^{D-2}q_2}{\vec{q}_2^{\,2}}\Phi_B(-\vec{q}_2,\mathbf{s}_0)\!\int\limits_{\delta-i\infty}^{\delta+i\infty}\!\frac{d\omega}{2\pi i}\left(\frac{s}{\mathbf{s}_0}\right)^{\omega}G_{\omega}(\vec{q}_1,\vec{q}_2)
$$

Green's function is **process-independent** and takes care of the **energy**

dependence

! determined through the **BFKL equation**

[Ya.Ya. Balitskii, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)]

Impact factors are **process-dependent** and depend on the hard scale, but not on the energy

Successful tests of NLA BFKL in the **Mueller–Navelet** channel with the advent of the LHC; nevertheless, *new BFKL-sensitive observables* as well as *more exclusive !nal-state reactions* are needed (**di-hadron**, **hadron-jet**, **heavy-quark pair**, **multi-jet**, production processes,...)

> (**di-hadron**) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2016, 2017)] (**four-jet**) [F. Caporale, F.G.C., G. Chachamis, A. Sabio Vera (2016)] (**multi-jet**) F. Caporale, F.G.C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (2016, 2017, 2017)]

(**MN jets**) [B. Ducloué, L. Szymanowski, S. Wallon (2014); F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2015, 2016)] (**heavy-quark pair**) [F.G.C., D.Yu. Ivanov, B. Murdaca, A. Papa (2018); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M. Fucilla, A. Papa (2018)] (**hadron-jet**) [M.M.A. Mohammed, MD thesis (2018); A.D. Bolognino, F.G.C., D.Yu. Ivanov, M.M.A. Mohammed, A. Papa (2018)]

Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_{T} and large rapidity separation, Y **BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup**

Moderate *x* (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach

Inclusive Higgs + jet

Resummed distributions

Closing statements

$$
\int_{3}^{1} dx_{1} \int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}}
$$

BEKLAP NOVALAT 1ATC' hvrhrid tactorizatio Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_{T} and large rapidity separation, Y Inclusive hadroproduction of two jets with high p_T and large rap **BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup**

Moderate *x* (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach $\left(\frac{D}{D} \right)$ $\overline{\mathsf{D}}$ 1 t-|
| α *fractorization*) \rightarrow $\text{orderate}\;x\;(\text{collinear}\;PDFs),\;\text{but}\;t\text{-channel}\;p_T\;(HE\;factorization)\;\rightarrow\;\;$

Introduction & Motivation

Inclusive

Higgs + jet

Resummed distributions

Closing statements

$$
\int_{3}^{1} dx_{1} \int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}}
$$

BEKLAP NOVALAT 1ATC' hvrhrid tactorizatio Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_{T} and large rapidity separation, Y Inclusive hadroproduction of two jets with high p_T and large rap **BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup**

Moderate *x* (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach $\left(\frac{D}{D} \right)$ $\overline{\mathsf{D}}$ 1 t-|
| α *fractorization*) \rightarrow $\text{orderate}\;x\;(\text{collinear}\;PDFs),\;\text{but}\;t\text{-channel}\;p_T\;(HE\;factorization)\;\rightarrow\;\;$

Introduction & Motivation

Inclusive

Higgs + jet

Resummed distributions

Closing statements

$$
\frac{d\sigma}{dy_1 dy_2 d^2 \vec{k}_1 d^2 \vec{k}_2} = \sum_{r,s=qg} \int_0^1 dx_1 \int_0^1 dx_2 f_r(x_1,\mu_F) f_s(x_2,\mu_F) \frac{d\hat{\sigma}_{r,s}(x_1x_2s,\mu_F)}{dy_1 dy_2 d^2 \vec{k}_1 d^2 \vec{k}_2}
$$
\n
$$
\frac{d\hat{\sigma}_{r,s}(x_1x_2s,\mu)}{dy_1 dy_2 d^2 \vec{k}_1 d^2 \vec{k}_2} = \frac{1}{(2\pi)^2}
$$
\n
$$
\times \int_0^{\frac{1}{2\pi}} \frac{d^2 \vec{q}_1}{\vec{q}_1^2} \mathcal{V}_f^{(r)}(\vec{q}_1, s_0, x_1, \vec{k}_1)
$$
\n
$$
\times \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{x_1x_2s}{s_0}\right)^{\omega} \mathcal{G}_{\omega}(\vec{q}_1, \vec{q}_2)
$$
\n
$$
\times \int_{\frac{1}{2\pi}}^{\frac{d^2 \vec{q}_2}{d^2}} \mathcal{V}_f^{(s)}(\vec{q}_2, s_0, x_2, \vec{k}_2)
$$

 (k_2, y_2)

BEKLAP NOVALAT 1ATC' hvrhrid tactorizatio Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_{T} and large rapidity separation, Y Inclusive hadroproduction of two jets with high p_T and large rap **BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup**

Moderate *x* (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach $\left(\frac{D}{D} \right)$ $\overline{\mathsf{D}}$ 1 t-|
| α *fractorization*) \rightarrow $\text{orderate}\;x\;(\text{collinear}\;PDFs),\;\text{but}\;t\text{-channel}\;p_T\;(HE\;factorization)\;\rightarrow\;\;$

Introduction & Motivation

Inclusive

Higgs + jet

Resummed distributions

Closing statements

$$
\frac{d\sigma}{dy_1 dy_2 d^2 \vec{k_1} d^2 \vec{k_2}} = \sum_{r,s=q,g} \int_0^1 dx_1 \int_0^1 dx_2 f_r(x_1,\mu_F) f_s(x_2,\mu_F) \frac{d\hat{\sigma}_{r,s}(x_1x_2s,\mu_F)}{dy_1 dy_2 d^2 \vec{k_1} d^2 \vec{k_2}} \frac{\frac{1}{\text{jet vertical amp}}}{\frac{\text{jet vertical amp}}{\text{opt.}}}
$$
\n
$$
\frac{d\hat{\sigma}_{r,s}(x_1x_2s,\mu)}{dy_1 dy_2 d^2 \vec{k_1} d^2 \vec{k_2}} = \frac{1}{(2\pi)^2}
$$
\n
$$
\times \int_0^{\frac{1}{2}} \frac{d^2 \vec{q}_1}{\vec{q}_1^2} \mathcal{V}_f^{(r)}(\vec{q}_1, s_0, x_1, \vec{k_1}) \text{ of } \vec{q}_1
$$
\n
$$
\times \int_0^{\frac{1}{2}} \frac{d^2 \vec{q}_2}{\vec{q}_2^2} \mathcal{V}_f^{(s)}(\vec{q}_2, s_0, x_2, \vec{k_2}) \text{ of } \vec{q}_1
$$
\n
$$
\times \int_0^{\frac{1}{2}} \frac{d^2 \vec{q}_2}{\vec{q}_2^2} \mathcal{V}_f^{(s)}(\vec{q}_2, s_0, x_2, \vec{k_2}) \text{ of } \vec{q}_1
$$

Mueller-Navelet jets: theory vs experiment

Possibility to define *infrared-safe* observables and constrain PDFs

Theory vs experiment: CMS $@7 \text{TeV}$ with **symmetric** p_T -ranges, only!

LHC kinematic domain *in between* the sectors described by BFKL and DGLAP

Clearer manifestations of high-energy signatures expected at increasing energies

Need for *more exclusive* final states as well as *more sensitive* observables

Strong manifestation of higher-order

instabilities via *scale variation* (**¡!**)

8

Inclusive Higgs + jet

Closing

statements

Mueller-Navelet jets: theory vs experiment

Possibility to define *infrared-safe* observables and constrain PDFs

Theory vs experiment: CMS $@7 \text{TeV}$ with **symmetric** p_T -ranges, only!

LHC kinematic domain *in between* the sectors described by BFKL and DGLAP

Clearer manifestations of high-energy signatures expected at increasing energies

Strong manifestation of higher-order

instabilities via *scale variation* (**¡!**)

 Need for *more exclusive* final states as well as *more sensitive* observables **BACKUP slides**

- \circ ...call for some optimization procedure...
- \circ ...choose scales to mimic the most relevant subleading terms
- **BLM** [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]
	- \checkmark preserve the conformal invariance of an observable...
	- \checkmark ...by making vanish its β_0 -dependent part
- * "Exact" BLM:

suppress $NLO IFs + NLO Kernel \beta_0-dependent factors$

Inclusive Higgs + jet

Closing

statements

NLA BFKL corrections to cross section with opposite sign with respect to the leading order (LO) result and large in absolute value...

Large energy scales expected to **stabilize** the high-energy resummed series

Inclusive Higgs + jet: azimuthal coefficients

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY

$$
e_0 + \sum_{n=1}^{\infty} 2 \cos(n\varphi) e_n
$$

 Large energy scales expected to **stabilize** the high-energy resummed series \mathbf{c} **cales** *d* xpecte \overline{L} \mathbf{S} |
|
|*abilize* the high-energy resumn

 $\left[p_J , y_J\right)\right]$

Inclusive Higgs + jet: azimuthal coefficients re Higgs + jet; azin LO BFKL kernel, i.e. transfer from the Inclusive Higgs + t LOTADIA ATTRED I **BOUTRING HICCG + 10+** 0711011 DOL COOFFICIA

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY $of a Hiooc + iet cv$ Inclusive h.p. of a Higgs $+$ jet system with high p_T and large rapidity

$$
\mathcal{C}_0 + \sum_{n=1}^{\infty} 2\cos(n\varphi) \mathcal{C}_n
$$

$$
\begin{aligned}\n\frac{d\hat{\sigma}_{r,s}(x_1x_2s,\mu)}{-\frac{\partial}{\partial u_1}y_1} &= \frac{1}{(2\pi)^2} \\
&\times \int \frac{d^2\vec{q}_1}{\vec{q}_1^2} \mathcal{V}_H^{(r)}(\vec{q}_1,s_0,x_1,\vec{p}_H) \\
&\times \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{x_1x_2s}{s_0}\right)^{\omega} g_{\omega}(\vec{q}_1,\vec{q}_2) \\
&\times \int \frac{d^2\vec{q}_2}{\vec{q}_2^2} \mathcal{V}_J^{(s)}(\vec{q}_2,s_0,x_2,\vec{p}_J) \\
&= \frac{1}{\pi^2}\n\end{aligned}
$$

 Large energy scales expected to **stabilize** the high-energy resummed series \mathbf{c} **cales** *d* xpecte \overline{L} \mathbf{S} |
|
|*abilize* the high-energy resumn

Inclusive Higgs + jet: azimuthal coefficients re Higgs + jet; azin LO BFKL kernel, i.e. transfer from the Inclusive Higgs + t LOTADIA ATTRED I **BOUTRING HICCG + 10+** 0711011 DOL COOFING

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY $of a Hiooc + iet cv$ Inclusive h.p. of a Higgs $+$ jet system with high p_T and large rapidity

 Large energy scales expected to **stabilize** the high-energy resummed series \mathbf{c} **cales** *d* xpecte \overline{L} \mathbf{S} |
|
|*abilize* the high-energy resumn

Inclusive Higgs + jet: azimuthal coefficients re Higgs + jet; azin LO BFKL kernel, i.e. transfer from the Inclusive Higgs + t LOTADIA ATTRED I **BOUTRING HICCG + 10+** 0711011 DOL COOFING

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY $of a Hiooc + iet cv$ Inclusive h.p. of a Higgs $+$ jet system with high p_T and large rapidity

 $d|\vec{p}_J|$ $\int y_H^{\rm max}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J \delta (y_H - y_J - \Delta Y) C_n$

Closing statements

11

Azimuthal correlations: $C_1/C_0 \equiv \langle \cos \varphi \rangle$ Δ zimuthal correlations[,] C./ We study the '-averaged cross section (*alias* the *Y* -distribution), *C*0(*Y,s*), the azimu-

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

The growth with energy of the pure partonic cross sections is quenched by the convolution with PDFs, this leading with PDFs, this leading with \mathbf{r}_i of \mathbf{r}_i of \mathbf{r}_i , $\mathbf{r$

Inclusive Higgs + jet Resummed distributions the Higgs and jet rapidity ranges being given above and 35 GeV *< |p* outions discussions and discussions and discussions are the contract of the co In Fig. 4 we present results for the *Y* -distribution, *C*0, in the three kinematic configurations under investigation. Here, the usual onset of the BFKL dynamics comes easily out.

Cn/C^m [95, 96] as functions of the Higgs-jet rapidity distance, *Y* .

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

Inclusive Higgs + jet Resummed distributions Closing the Higgs and jet rapidity ranges being given above and 35 GeV *< |p* outions discussions and discussions and discussions are the contract of the co In Fig. 4 we present results for the *Y* -distribution, *C*0, in the three kinematic configurations under investigation. Here, the usual onset of the BFKL dynamics comes easily out. The growth with energy of the pure partonic cross sections is quenched by the convolution with PDFs, this leading with PDFs, this leading with \mathbf{r}_i of \mathbf{r}_i of \mathbf{r}_i , $\mathbf{r$

statements

12

Azimuthal correlations: $C_2/C_0 \equiv \langle \cos 2\varphi \rangle$ Δ zimuthal correlations[,] C.I. We study the '-averaged cross section (*alias* the *Y* -distribution), *C*0(*Y,s*), the azimu-

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

Cn/C^m [95, 96] as functions of the Higgs-jet rapidity distance, *Y* .

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

 $d\sigma(|\vec{p}_H|, \Delta Y, s)$ $d|\vec{p}_H|d\Delta Y$ = $\int \! \! p_J^{\max}$ *J* $p_J^{\rm min}$ *J* $d|\vec{p}_J|$ $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J \delta (y_H - y_J - \Delta Y) C_0$

p_H **-distribution:** dC_0/dp_H *Cn/C^m* [95, 96] as functions of the Higgs-jet rapidity distance, *Y* . P *H*-distribution: a C₀/ a p _{*H*}

 $d\sigma(|\vec{p}_H|, \Delta Y, s)$ $d|\vec{p}_H|d\Delta Y$ = $\int \! \! p_J^{\max}$ *J* $p_J^{\rm min}$ *J* $d|\vec{p}_J|$ $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J\delta (y_H - y_J - \Delta Y)\mathcal{C}_0$

p_H **-distribution:** dC_0/dp_H *Cn/C^m* [95, 96] as functions of the Higgs-jet rapidity distance, *Y* . P *H*-distribution: a C₀/ a p _{*H*}

$$
p_1) + \text{proton}(p_2) \rightarrow H(|\vec{p}_H|, y_H) + X + \text{jet}(|\vec{p}_J|, y_J)
$$

\n
$$
|\vec{p}_J| = |\vec{p}_H| \text{ (Born)}; 35 \text{ GeV} < |\vec{p}_J| < 60 \text{ GeV (LLA, NLA)}
$$

\n
$$
|y_H| < 2.5; |y_J| < 4.7; \Delta Y = y_H - y_J
$$

\n
$$
\sqrt{s} = 14 \text{ TeV}
$$

\n
$$
\overline{\text{MS}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\overline{\text{MST}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\overline{\text{MST}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\overline{\text{MIA}} \qquad \overline{\Delta Y = 5}
$$

\n
$$
\overline{\vec{p}_H} | \text{ [GeV]}
$$

$$
p_{1}) + \text{proton}(p_{2}) \rightarrow H(|\vec{p}_{H}|, y_{H}) + X + \text{jet}(|\vec{p}_{J}|, y_{J})
$$

\n
$$
|\vec{p}_{J}| = |\vec{p}_{H}| \text{ (Born)}; 35 \text{ GeV} < |\vec{p}_{J}| < 60 \text{ GeV (LLA, NLA)}
$$

\n
$$
|y_{H}| < 2.5; |y_{J}| < 4.7; \Delta Y = y_{H} - y_{J}
$$

\n
$$
\sqrt{s} = 14 \text{ TeV}
$$

\n
$$
\overline{\text{MS}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\overline{\text{MS}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\Delta Y = 5
$$

\n
$$
\overline{\text{Born}}
$$

\n
$$
\Delta Y = 5
$$

\n
$$
|\vec{p}_{H}| \text{ [GeV]}
$$

$$
p_{1}) + \text{proton}(p_{2}) \rightarrow H(|\vec{p}_{H}|, y_{H}) + X + \text{jet}(|\vec{p}_{J}|, y_{J})
$$

\n
$$
|\vec{p}_{J}| = |\vec{p}_{H}| \text{ (Born)}; 35 \text{ GeV} < |\vec{p}_{J}| < 60 \text{ GeV (LLA, NLA)}
$$

\n
$$
|y_{H}| < 2.5; |y_{J}| < 4.7; \Delta Y = y_{H} - y_{J}
$$

\n
$$
\sqrt{s} = 14 \text{ TeV}
$$

\n
$$
\overline{\text{MS}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\overline{\text{MS}} \text{ scheme; MMT2014 NLO PDF set}
$$

\n
$$
\Delta Y = 5
$$

\n
$$
\overline{\text{Born}}
$$

\n
$$
\Delta Y = 5
$$

\n
$$
|\vec{p}_{H}| \text{ [GeV]}
$$

$$
p_{1}) + \text{proton}(p_{2}) \rightarrow H(|\vec{p}_{H}|, y_{H}) + X + \text{jet}(|\vec{p}_{J}|, y_{J})
$$

\n
$$
|\vec{p}_{J}| = |\vec{p}_{H}| \text{ (Born)}; 35 \text{ GeV} < |\vec{p}_{J}| < 60 \text{ GeV (LLA, NLA)}
$$

\n
$$
|y_{H}| < 2.5; |y_{J}| < 4.7; \Delta Y = y_{H} - y_{J}
$$

\n
$$
\sqrt{s} = 14 \text{ TeV}
$$

\nMS scheme; MMT2014 NLO PDF set
\n
$$
\Delta Y = 5
$$

\n
$$
\Delta Y = 5
$$

\n
$$
\Delta V = 5
$$

\n
$$
|\vec{p}_{H}| \text{ [GeV]}
$$

\n**SETAL**

Introduction & Motivation

Inclusive

Higgs + jet

Resummed distributions

Closing statements

Closing statements

- Inclusive Higgs + jet as new **semi-hard** probe for **BFKL**
- Partial NLA BFKL accuracy: NLA kernel + LO IFs + NLO RG
- M *Encouraging* statistics for rapidity and p_H -distributions
- **Fair stability** under *higher-order* corrections V

- Inclusive Higgs + jet as new **semi-hard** probe for **BFKL**
- Partial NLA BFKL accuracy: NLA kernel + LO IFs + NLO RG M
- V *Encouraging* statistics for rapidity and p_H -distributions
- **Fair stability** under *higher-order* corrections M
	- Feasibility of **precision measurements** to be *gauged*
	- Full NLA BFKL analysis: NLO Higgs IF & jet-algorithm selection
	- Distributions as *underlying staging* for several **resummations**
		- *Transversal formalism* to **encode** distinct resummations

Introduction & Motivation

Inclusive

Higgs + jet

Resummed

distributions

Closing

statements

Closing statements

Letter of Interest for SnowMass 2021 Γ_{other} of Γ_{other} formal for $\Gamma_{\text{cent}}\mathcal{M}_{\text{even}}$ 9091 LUCUCL of the union for million means ZOZI

Francesco G. Celiberto ^{1,2*}, Michael Fucilla ^{3,4§}, Dmitry Yu. Ivanov ^{5,6†}, Mohammed M.A. Mohammed ^{3,4‡}, and Alessandro Papa ^{3,4¶} Γ use ogge Γ Γ eliherte 1.2 * Michael Γ usille 3.4 § Dreitur V. Luaner 5.6^{\dagger} latter. Nonetheless, and state cross section sections to intermediate cross section intermediate cross section \mathbb{R} . iviolialisme meson transverse momenta, where $\frac{1}{2}$ in the case of $\frac{1}{2}$ in the case of $\frac{1}{2}$

analyses at the Large Hadron Collider (LHC) and at future hadron, lepton and leptonhadron colliders. This is the best time to shore up our knowledge of strong interactions ³ *Dimentosity* and the recent energies reachasts written *hard* reactions [1], *i.e* where the scale hierarchy, $s \gg \{Q^2\} \gg \Lambda_{\text{QCD}}^2$ (*s* is the squared center-of-mass energy, $\{Q\}$ a (set of) hard scale(s) characteristic of the process and Λ_{QCD} the QCD scale), is stringently preserved, gives us a faultless chance to test perturbative *s* and quite original ways. Tiere, a genuille inseq-order treatment α ⁶ *Novosibirsk State University, 630090 Novosibirsk, Russia* The search for evidence of New Physics is in the viewfinder of current and forthcoming though, the high luminosity and the record energies reachable widening the horizons of kinematic sectors uninvestigated so far. A broad class of processes, called *diffractive semi*-QCD in new and quite original ways. Here, a genuine fixed-order treatment based on collinear factorization fails since large energy logarithms enter the perturbative series in $s = \frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ between the search for evidence of ivew Physics is in the viewinder of current and forthcoming analyses at the Large fraction Comder (LftC) and at future hadron, lepton and leptonnadron comders. This is the best time to shore up our knowledge of strong interactions
 though, the high fuminosity and the record energies reachable widening the horizons of kinematic sectors uninvestigated so far. A proad class of processes, called *ayjractive seminard* reactions [1], *t.e* where the scale merarchy, $s \gg (\sqrt{5}) \gg N_{\text{QCD}}$ (*s* is the squared the QCD scale), is stringently preserved, gives us a faultless chance to test perturbative states in the collisions of the collisions in the server of the photons in the call photons in servers as a series as a series of the can serve as a series of the server as a series of the can serve as a series of the can commear factorization rails since large energy logarithmis enter the perturbative series in

High-energy QCD at colliders: semi-hard reactions and unintegrated gluon densities $\begin{array}{ccccccccccccccccccccc}\n\textbf{1} & \textbf{1} & \textbf{$ sive forward and Drell and Drelling production in the LHCb. Semi-narrow is the Dreis semi-narrow emission of t predictions done in the high-energy resummmation formalism with results obtained at

 $\ast\ast\ast$

The research lines presented above are relevant in the search for high-energy effects via the description of an increasing number of hadronic and lepto-hadronic reactions at the LHC and at new-generation colliders like the Electron-Ion Collider (EIC). At the same α the BFKL resummation serves as a tool to address more general aspects of OCD \int in the hadronic structure to other resummations and to the production mechanism of hadronic bound states. We believe that the inclusion of these topics in the *SnowMass* 2021 scientific program would accelerate progress of our understanding of both formal and phenomenological aspects of strong interactions at high energies. Mueller-Navelet jets [3] have been identified as favorable observables in the discrimination The research lines presented above are relevant in the search for high-energy effects via the description of an increasing number of hadronic and lepto-hadronic reactions at the LHC and at new-generation colliders, like the Electron-Ion Collider (EIC). At the same time, the BFKL resummation serves as a tool to address more general aspects of QCD, from the hadronic structure to other resummations and to the production mechanism of and phenomenological aspects of strong interactions at high energies. ***

forward heavy-light mesons and quarkonia.

Introduction

Transverse Momentum

Distributions

 $d^2\mathbf{k}_T$

Generalized Parton Distributions

z
Zanada
Zanada

 $d^2\mathbf{k}_T$

PDFs Parton Distribution Functions

z
Zanada
Zanada

 d^2 **b***T*

Z

Parton densities: an incomplete family tree

Wigner distributions $\rho\left(x,\mathbf{k}_T,\mathbf{b}_T\right)$

Introduction **The high-energy resummation BACKUP SI**

Gluon Reggeization in perturbative QCD

-
- \Diamond Regge limit: $s \simeq -u \rightarrow \infty$, *t* not growing with *s*
- \rightarrow amplitudes governed by

$$
\text{gluon Regional} \rightarrow D_{\mu\nu} = -i \frac{g_{\mu\nu}}{q^2} \left(\frac{s}{s_0}\right)^{\alpha_g(q^2)-1}
$$

 $\frac{\text{feature}}{\text{value}}$ all-order resummation: **LLA** $[\alpha_s^n(\ln s)^n]$ + **NLA** $[\alpha_s^{n+1}(\ln s)^n]$ $\frac{1}{2}$ factorization of elastic and real part of inelastic amplitudes

Elastic scattering process: $A + B \longrightarrow A' + B'$

$$
(\mathcal{A}_8^-)^{A'B'}_{AB} = \Gamma^c_{A'A} \left[\left(\frac{-s}{-t} \right)^{j(t)} - \left(\frac{s}{-t} \right)^{j(t)} \right] \Gamma^c_{B'B}
$$

\n
$$
j(t) = 1 + \omega(t), \quad j(0) = 1
$$

\n
$$
\omega(t) \rightarrow \text{Reggeized gluon trajectory}
$$

\n
$$
\Gamma^c_{A'A} = g \langle A' | T^c | A \rangle \Gamma_{A'A} \rightarrow \text{PPR vertex}
$$

\n
$$
T^c \rightarrow \text{fundamental } (q) \text{ or adjoint } (g)
$$

\ny where all elementary particles reggeize

 \circ Gluon quantum numbers in the *t*-channel: 8^- representation

The high-energy resummation

 Im_s {A} = *s* $(2\pi)^{D-2}$ $\int d^{D-2}q_1$ $\vec{q}_1^{\,2}$

$$
\Phi_A(\vec{q}_1, \mathbf{s}_0) \int \frac{d^{D-2}q_2}{\vec{q}_2^{2}} \Phi_B(-\vec{q}_2, \mathbf{s}_0) \int \frac{d\omega}{2\pi i} \left(\frac{s}{\mathbf{s}_0}\right)^{\omega} G_{\omega}(\vec{q}_1, \vec{q}_2)
$$

Green's function is **process-independent** and takes care of the **energy dependence**

 $\omega G_{\omega}(\vec{q}_1, \vec{q}_2) = \delta^{D-2}(\vec{q})$

! determined through the **BFKL equation**

[Ya.Ya. Balitskii, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)]

$$
D-2(\vec{q}_1-\vec{q}_2)+\int d^{D-2}q\,K(\vec{q}_1,\vec{q})\,G_{\omega}(\vec{q},\vec{q}_1)\;.
$$

Impact factors are **process-dependent** and depend on the hard scale, but not on the energy known in the NLA just for few processes

Introduction **The high-energy resummation BACKUP SI**

⇧ **colliding partons**

 $\Diamond \gamma^* \longrightarrow V$, with $V = \rho^0$, ω , φ , forward case

 \diamond forward jet production

 \diamond forward identified hadron production

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni, G. Rodrigo (2000)]

[D.Yu. Ivanov, M.I. Kotsky, A. Papa (2004)]

[J. Bartels, D. Colferai, G.P. Vacca (2003)] (exact IF) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa, A. Perri (2012)] (small-cone IF) [D.Yu. Ivanov, A. Papa (2012)] (several jet algorithms discussed) [D. Colferai, A. Niccoli (2015)]

[D.Yu. Ivanov, A. Papa (2012)]

[J. Bartels *et al.* (2001), I. Balitsky, G.A. Chirilli (2011, 2013)]

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June 17th, 2020

Introduction **The high-energy resummation BACKUP slides**

BFKL in the LLA (I)

$$
\sum_{i=1}^{n} q_i
$$
\n
$$
\sum_{i=1}^{n} q_i
$$
\n
$$
\sum_{i=1}^{n} q_i
$$
\n
$$
\sum_{i=1}^{n} q_{i+1}
$$
\n
$$
\sum_{i=1}^{n} q_{i+1} (q_i, q_{i+1}) \left(\frac{s_i}{s_R}\right)^{\omega(t_i)} \frac{1}{t_i} \frac{1}{t_i} \frac{1}{t_{n+1}} \left(\frac{s_{n+1}}{s_R}\right)^{\omega(t_{n+1})} \Gamma_{\tilde{B}B}^{c_{n+1}}
$$
\n
$$
\sum_{i=1}^{n} q_{i+1} (q_i, q_{i+1}) \rightarrow \text{RRG vertex}
$$

 $s_R \rightarrow$ energy scale, irrelevant in the LLA

Inelastic scattering process $A + B \rightarrow \tilde{A} + \tilde{B} + n$ in the LLA

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June 17th, 2020

Introduction The high-energy resummation

BFKL in the LLA (II)

 Σ_n

 p_B

 $\mathcal{A}_{AB}^{A'B'} = \sum{(\mathcal{A}_{\mathcal{R}})_{AB}^{A'B'}}$, $\mathcal{R} = 1$ (singlet), 8⁻ (octet), ...

The 8^- color representation is important for the bootstrap, i.e. the consistency between the above amplitude and that with one Reggeized gluon exchange

R

Francesco Giovanni Celiberto BFKL vs DGLAP in semi-hard processes June 17th, 2020

Introduction at work a BFKL versus DGLAP Introduction Hybrid factorization at work Closing statements Backup

Forward-jet impact factor

 \bullet to allow one parton to generate the jet

take the impact factors for **colliding partons**

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni and G. Rodrigo (2000)]

"open" one of the integrations over the phase space of the intermediate state

 $d|\vec{p}_J|$ $\int y_H^{\rm max}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J \delta (y_H - y_J - \Delta Y) C_n$

 $d|\vec{p}_J|$ $\int y_H^{\rm max}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J\,\delta\,(y_H-y_J-\Delta Y)\,\mathcal{C}_n$

 $d|\vec{p}_J|$ $\int y_H^{\rm max}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J \delta (y_H - y_J - \Delta Y) C_n$

 $d|\vec{p}_J|$ $\int y_H^{\rm max}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J\,\delta\,(y_H-y_J-\Delta Y)\,\mathcal{C}_n$

ϕ **-averaged cross section:** C_0 $(M_t \rightarrow +\infty)$ over the phase space for two final-state particles, while the rapidity interval, *Y* , between p-averaged cross se

 $C_n(\Delta Y,s) = \int^{p_{H}^{\max}}$ *H* $p_H^{\rm min}$ *H* $d|\bar{p}$ *H|* Z *^p*max *J* $p_{\cdot I}^{\text{min}}$ *J* $d|\vec{p}_J|$ $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J \delta (y_H - y_J - \Delta Y) C_n$

ϕ **-averaged cross section:** C_0 $(M_t \rightarrow +\infty)$ over the phase space for two final-state particles, while the rapidity interval, *Y* , between p-averaged cross se

 $C_n(\Delta Y,s) = \int^{p_{H}^{\max}}$ *H* $p_H^{\rm min}$ *H* $d|\bar{p}$ *H|* Z *^p*max *J* $p_{\cdot I}^{\text{min}}$ *J* $d|\vec{p}_J|$ $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* y_J^{min} *J* $dy_J\,\delta\,(y_H-y_J-\Delta Y)\,\mathcal{C}_n$

Closing statements the with PDFs, this leading with PDFs, this leading with \mathbf{r} of \mathbf{r} of \mathbf{r} of \mathbf{r} , \mathbf{r} ,

Azimuthal correlations: C_1/C_0 $(M_t \rightarrow +\infty)$ Δ zimuthal correlations^{, *C.IC*} We study the '-averaged cross section (*alias* the *Y* -distribution), *C*0(*Y,s*), the azimu-

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

Inclusive Higgs + jet Resummed distributions the Higgs and jet rapidity ranges being given above and 35 GeV *< |p* outions discussions and discussions and discussions are the contract of the co In Fig. 4 we present results for the *Y* -distribution, *C*0, in the three kinematic configurations under investigation. Here, the usual onset of the BFKL dynamics comes easily out. The growth with energy of the pure partonic cross sections is quenched by the convolu-

Cn/C^m [95, 96] as functions of the Higgs-jet rapidity distance, *Y* .

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

 $\text{symmetric } p_T \text{ range}$ **range** Backup **natural scales**

 $R_{n0}(\Delta Y,s) = C_n/C_0 \equiv \langle \cos n\varphi \rangle$

 $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J \delta (y_H - y_J - \Delta Y) C_0$

 $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J\delta (y_H - y_J - \Delta Y)\mathcal{C}_0$

 $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J \delta (y_H - y_J - \Delta Y) C_0$

 $\int^y\!\!\! \frac{y^{\rm max}}{H}$ *H* $y_H^{\rm min}$ *H* dy_H $\int y^{\rm max}_J$ *J* $y_J^{\rm min}$ *J* $dy_J\delta (y_H - y_J - \Delta Y)\mathcal{C}_0$

