Constraining the Higgs branching ratio to jets EF01 Working group meeting Snowmass LOI EF01 067

Cristina Mantilla Suarez (FNAL) Phil Harris, Dylan Rankin (FNAL) Nov 2, 2020

Motivation

- Higgs couplings are a crucial test of SM
- The HL-LHC has potential to test them at a higher precision
- In this talk, we will focus on **Higgs decays to hadronic final states** \bullet
 - These have high branching ratios
 - Some are still un-explored at LHC because of high background
 - High p_T reconstruction opens a window to constrain them

Can we reconstruct the Higgs decays into one single cone? e.g. consider ggH production

- We can reconstruct Higgs as one single large-cone jet
 - Require high-pT jet
 - Tag a Higgs jet Main background is from QCD jets
 - Reconstruct Higgs jet mass and perform a fit

A baseline result @ 3000 fb⁻¹ With common available tools

Use jet-substructure tools (n-subjetiness) for tagging

Use jet soft-drop mass

Fit for Higgs signal

Decay channel	Branching ratio	δ
Inclusive	1	0.46
$h ightarrow ar{b} b$	$5.84 imes10^{-1}$	0.16
$h \to WW^*$	$2.14 imes10^{-1}$	$2.4 \times$
h ightarrow gg	$8.19 imes10^{-2}$	$0.7 \times$
$h ightarrow ar{ au} au$	$6.27 imes10^{-2}$	0.44
$h \rightarrow \bar{c}c$	$2.89 imes10^{-2}$	0.13 :
$h \rightarrow ZZ^*$	$2.62 imes 10^{-2}$	$1.4 \times$

Use deep learning for tagging How good is our discrimination against unexplored hadronic modes

Deep learning for tagging w. jet particles (pT, η , ϕ , ID)

Performance depends on decay channel (worse for gg)

Use color singlet property for tagging

e.g. a ratio of groomed and ungroomed mass

can show differences in retaining collinear components but removing soft emissions

This is an idea also in development

see e.g. collinear-drop (arxiv:1907.11107.pdf) and color-singlet observables (arxiv:2006.10480)

Use deep learning for mass regression Need to find a way to include semi-visible decays in the reconstruction

Jet soft drop mass has broad peaks for $h \rightarrow \tau \tau$ and WW

Use regressed (jet + neutrino) 4-vector

Improved performance

Fit to regressed Higgs jet mass

Gl GI GRUDD

Take $h \rightarrow gg$ as proxy for background-like decays

We are able to improve limit by almost 50%

Tagger	QCD background efficiency	$\delta\sigma$
$(\tau_2/\tau_1)^{\text{DDT}}$	6%	$0.46 \times$
RU ^{DDT} and mass-ratios DNN ^{DDT}	1%	$0.14 \times$
RU ^{DDT} and mass-ratios DNN ^{DDT}	10%	$0.26 \times$
^{DT} and mass-ratios DNN ^{DDT} $(h \rightarrow gg)$	10%	0.41 ×

How can we use the constrain on cross section from the measurement of the boosted Higgs jet

- We can assume that the limit we have obtained by reconstructing the Higgs jet is an "inclusive" limit
 - This assumption has biases (mainly from decays that are not reconstructed in the jet cone or BSM Higgs decays)
- A constraint on the inclusive cross section can lead to one on the Higgs width: $(gg \to h) \times \frac{\sigma(W + h \to bb)}{\sigma(gg \to h \to bb)} \right)^{2}$

$$\Gamma_{\rm h} \propto \frac{1}{\sigma({\rm W} + {\rm h} \rightarrow {\rm WW})} \times \left(\sigma({\rm h})\right)$$

Our plans for Snowmass: Investigate future directions to improve constraint

- Demonstrate the feasibility of measuring background-like decays of the Higgs boson:
 - e.g. can we improve our constraint on $h \rightarrow gg$
 - or, most importantly, can we constrain BSM Higgs decays that carry some of the SM Higgs boson features
- Study approach that leverages on a prior knowledge of well known decay modes of the Higgs boson

Our plans for Snowmass: Investigate semi-supervised detection

- Quasi Anomalous Knowledge approach (QUAK) see LHC Olympics talk from S.E. Park (MIT) and arXiv to appear soon.
 - Semi-supervised Deep Learning
 - Starts w. background and approximate signal prior (SM Higgs)
 - Construct 2D loss space to search for similar anomalous signals (from BSM Higgs decays) these will have large signal and background loss

0,0 Background Loss 11

Summary

- all hadronic decays of the Higgs in one single-jet cone
- For Snowmass:
 - We want to summarize these results
 - signal

Most results in these slides from: <u>arxiv:1910.02082</u>, study how to reconstruct

• And improve the constraint on challenging decay channels ($h \rightarrow gg$) and Higgs signals that only share certain similarities with the SM Higgs boson

