Theoretical motivation for the Very Low Energy Neutrino Factory

Joachim Kopp

July 12th, 2011

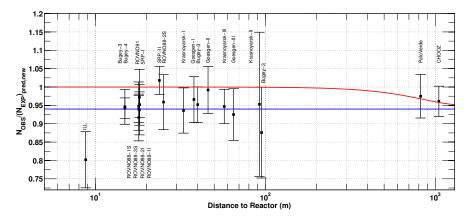
‡Fermilab

Short baselines anomalies

An intriguing accumulation of inconclusive hints ...

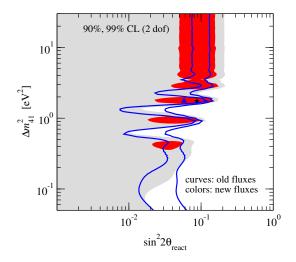
The reactor anti-neutrino anomaly

- Recent reevaluation of expected reactor $\bar{\nu}_e$ flux is $\sim 3.5\%$ higher than previous prediction Mueller et al. arXiv:1101.2663 vs. Schreckenbach 1985
- Method: Use measured β -spectra from ²³⁸U, ²³⁵U, ²⁴¹Pu fission at ILL and convert to $\bar{\nu}_e$ spectrum
- Problem: Requires knowledge of *Q*-values for all contributing decays.


Old method Schreckenbach 1985	New method Mueller et al. arXiv:1101.2663
30 effective branches	Uses nuclear databases (90% of $\bar{\nu}_e$ flux)
	5 effective branches (remaining 10%)
	Error propagation, correlation matrix
	Off-equilibrium corrections
	(short irradiation time at ILL \rightarrow not all β -branches
	in equilibrium

Mueller et al.'s results recently confirmed using independent method: P. Huber, arXiv:1106.0687

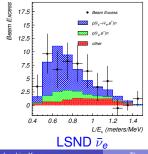
... but also mentions possibly poorly understood nculear effects (weak magnetism) in nuclei with large log *ft* as a possible source of the anomaly.

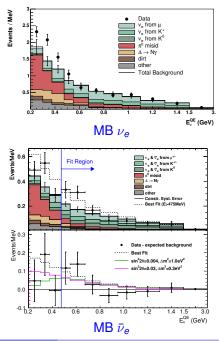

The reactor anti-neutrino anomaly (2)

• Have short-baseline reactor experiments observed a deficit?

Mention et al. arXiv:1101.2755

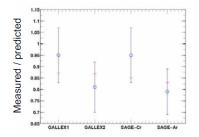
A sterile neutrino fit


plot by Thomas Schwetz

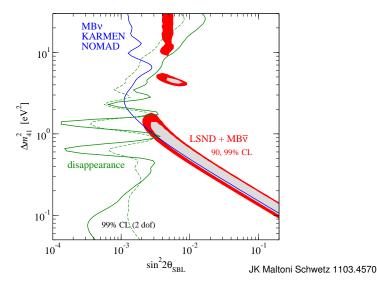

LSND, KARMEN, MiniBooNE

• LSND:

- $\bar{\nu}_e$ appearance in $\bar{\nu}_\mu$ beam from stopped pion source
- MiniBooNE:
 - $\bar{\nu}_e$ appearance in accelerated $\bar{\nu}_\mu$ beam
 - No v_e appearance in interesting energy region → CP violation?
- KARMEN:


Very similar to LSND, but no excess

The Gallium anomaly


- Calibration measurements for the GALLEX and SAGE solar neutrino detectors using intense radioactive ν_e sources (⁵¹Cr and ³⁷Ar)
- Neutrino detection via ${}^{71}\text{Ga} + \nu_e \rightarrow {}^{71}\text{Ge} + e^-$
- Result: Measurements consistently lower than expectation

Giunti Laveder arXiv:1005.4599, arXiv:1006.3244 Mention et al. Moriond 2011 talk

 Question: How well are efficiencies of the radiochemical method understood?

Another sterile neutrino fit

Tension in the fit \rightarrow 2 sterile neutrinos + CPV?

Joachim Kopp

Searching for sterile neutrinos

- MiniBooNE / LSND suggest: $4|U_{e4}|^2|U_{e5}|^2 \sim \text{few} \times 10^{-3}$
- expect $4|U_{e4}|^2$, $4|U_{e5}|^2$ individually at the few-10% level
- Reactor and gallium anomalies suggest $4|U_{e4}|^2 \sim \text{few-10\%}$

 \Rightarrow A ν_e or ν_μ disappearance experiment with a sensitivity at the per cent level could likely clarify the situation

- Want to do this search in as many channels as possible.
- Ideally, want to see oscillation pattern difficult since straight section probably too long ...)
- Possible synergy with MINOS+, NOνA, T2K neutral current searches, if beam energy/baseline in these appropaite for Δm².

Possible implications of VLENF results

If disappearance is found ...

- Major step forward in neutrino physics
- But probably cannot claim discovery of sterile neutrino without observing oscillation dip.
- Far-reaching consequences for cosmology (ACDM *disfavors* $\sum m_{\nu} \gtrsim$ 0.5–1 eV)
- New direction for building models of flavor

If no disappearance is found ...

- Sterile neutrinos ruled out as explanation of LSND / MiniBooNE
- ... but we know something is going on in MiniBooNE

 \rightarrow Measurement with clean beam in same detector might help resolve this

Important: Need CONCLUSIVE result! No point in producing another $2.x\sigma$...

Other short-baseline physics opportunities

- Cross section measurements. Help resolve MiniBooNE M_A anomaly?
- Search for CPT violation
- Test more exotic models?

(e.g. Gninenko 1009.5536, 1107.0279)

Upgrades?

- A magnetized detector → appearance searches?
- A detector with lower backgrounds/systematics than MiniBooNE? $\rightarrow \nu_e$ disappearance search?