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What this talk is about

RMC is an important and poorly understood background for Mu2e.  

RMC on Al demands nuclear physics input (unlike muon DIO).  

Photon spectrum of RMC probes the relevant nuclear physics.  

The photon spectrum can be used to predict the positron/electron 
spectrum near the end-point (small parameter is       ) Te±/Eγ



Available on the arXiv. 

Work done in collaboration with Richard Hill.

arXiv:2010.09509



External Internal

Compton scattering 
In-medium pair production 

Virtual photon to e+ e-

Detector independent
Detector/target dependent

arXiv:2010.09509RMC served two ways



Motivation
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Kinematic End Point

Signal × 100

Background: positrons  
from high energy photons

Signal: Positron from 
muon capture on  27Al

μ− Al → e+ Na
CARTOON!

arXiv:2010.09509



On-shell  RMC  
• Mass of the muon becomes 

available as energy for the 
photon.   

• ~ 100 MeV photons are emitted.  

• Photon amplitude is 
complicated by nuclear physics. 

ℳ0 = ϵμ𝒥μ
0

μ

𝒥μ
0 = ⟨Mg, ν | ̂Jμ

EM |Al, μ1s⟩Photon on-shell
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Internal conversion 
• Calculable QED pair production 

amplitude. 

• Must be contracted against the 
off-shell photon amplitude.  

• Can depend on longitudinally 
polarized matrix elements.    

μ

ℳ = − ūγμv ×
e
q2

× 𝒥μ
*

𝒥μ
* = ⟨Mg, ν | ̂Jμ

EM |Al, μ1s⟩Photon off-shell
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The trouble: Nuclear physics

𝒥μ
* = ⟨Mg, ν | ̂Jμ

EM | Atom⟩Photon off-shell

𝒥μ
0 = ⟨Mg, ν | ̂Jμ

EM | Atom⟩Photon on-shell

Can this be reliably calculated? Can this be reliably measured? 

arXiv:2010.09509



The trouble: Nuclear physics

𝒥μ
0 = ⟨Mg, ν | ̂Jμ

EM | Atom⟩Photon on-shell

Related to photon spectrum

Has been measured, but not at a 
high enough level of precision 
for Mu2e.

P.C. Bergbusch, M.Sc. Thesis, UBC, 1993

arXiv:2010.09509



Suppose we measure 
the photon spectrum. 

 
 Then what?



External conversion 
• Monte Carlo simulations can be 

conducted with full detector setup in 
e.g. GEANT-4.  

• Includes Compton scattering and 
pair production in surrounding 
detector material etc.  

• For a spherically symmetric 
amplitude, a RMC independent 
probability can be constructed  
 

P(E+ |Eγ)

dΓ
dE+

= ∫ dEγP(E+ |Eγ) ×
dΓRMC

dEγ

⟨ |ℳ0 |2 ⟩
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What about internal 
conversion? 

Can we relate it to 
photon measurements?



Yes!
But only in certain regions 

of phase space…



This work revisits an old topic covered in: 

We disagree with this paper in a couple places. If 
interested see Appendix C of our paper arXiv:2010.09509



Basic Idea:  
 

Decompose 4-body 
LIPS into 3-body LIPS



dΓe+e− ∼ dΦ4𝒥μν
* Lμν ×

4πα
m4

*

dΦ4 = dΦ3* ×
dm2

*

2π
× dΦ2(γ* → e+e−)

In rest frame 
of photon dΦ2 =

d cos ϑdφ
32π2

βe

βe = 1−
4m2

e

m2
*

EM current 
matrix element

Standard QED 
Trace[spinors] 

4-body PS 



Photon rest frame

ϑ

ℰ+

dΦ2 =
d cos ϑdφ

32π2
βe

βe = 1−
4m2

e

m2
*
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Integrate over azimuthal angles 

𝒥μν
* Lμν

⟨Lμν⟩φ

m2
*

=

0 0 0 0
0 A 0 0
0 0 A 0
0 0 0 B

= A(𝒥11
* + 𝒥22

* ) + B𝒥33
*

A = 2 − (1 − cos2 ϑ)β2
e B = 2(1 − β2

e cos2 ϑ)

d cos ϑdφ
32π2

βe



Photon rest frame

ϑ γ* =
Eγ

m*

E+

E+ = γ*ℰ+ + γ*β*𝒫+ cos ϑ

Lab frame
Boost

ℰ+

= 1
2 Eγ(1 + β*βe cos ϑ)

Notice : Fixing E+ is equivalent to fixing cos ϑ
d cos ϑdφ

32π2
βe



dΓee

dE+
=

1
2Matom ∫ dΦ3

α
4πEγ ∫

m+
*

m−
*

dm2
*

m2
*

𝒥μν
*

⟨Lμν⟩φ

m2
*

𝒥μν
0 [−gμν] Pint(E+ |Eγ, Π)

Extra phase 
space variables

Internal 
conversion

Real photon 
amplitude

dΦ2



dΓee

dE+
= ∫ dΦ3

dΓ
dΦ3

Pint(E+ |Eγ, Π)

𝒥μν
0 [−gμν] Pint(E+ |Eγ, Π)

Extra phase 
space variables

Internal 
conversion

Real photon 
amplitude

• The function                              
depends on matrix elements with 
off-shell photon kinematics.


• To be calculable we need to find 
a limit where we can approximate 
with on-shell photon kinematics.

Pint(E+ |Eγ, Π)

arXiv:2010.09509



• The function                              
depends on matrix elements with 
off-shell photon kinematics.


• To be calculable we need to find 
a limit where we can approximate 
with on-shell photon kinematics.

Pint(E+ |Eγ, Π)

Pint(E+ |Eγ, Π) =
α

2πEγ ∫
m+

*

m*−

dm*

m* {2(1 − [1 − cos2 θ]β2
e )(1 + T2

*)

+2(1 − cos2 θ)β2
e L2

*}

Off-shell transverse

Longitudinal 

dΓee

dE+
= ∫ dΦ3

dΓ
dΦ3

Pint(E+ |Eγ, Π)



Endpoint Positrons



Photon rest frame

ϑ γ* =
Eγ

m*

E+

E+ = γ*ℰ+ + γ*β*𝒫+ cos ϑ

To approach maximum energy we need high energy (virtual) photons, and 
collinear positron production.  

Lab frame
Boost

ℰ+

= 1
2 Eγ(1 + β*βe cos ϑ)



Integrate over azimuthal angles 

𝒥μν
* Lμν

⟨Lμν⟩φ

m2
*

=

0 0 0 0
0 A 0 0
0 0 A 0
0 0 0 B

= A(𝒥11
* + 𝒥22

* ) + B𝒥33
*

A = 2 − (1 − cos2 ϑ)β2
e B = 2(1 − β2

e cos2 ϑ)

Collinear suppression 

d cos ϑdφ
32π2

βe



• The function                              
depends on matrix elements with 
off-shell photon kinematics.


• To be calculable we need to find 
a limit where we can approximate 
with on-shell photon kinematics.

Pint(E+ |Eγ, Π)

Pint(E+ |Eγ, Π) =
α

2πEγ ∫
m+

*

m*−

dm*

m* {2(1 − [1 − cos2 θ]β2
e )(1 + T2

*)

+2(1 − β2
e cos2 θ)L2

*}

Off-shell transverse

Longitudinal 

dΓee

dE+
= ∫ dΦ3

dΓ
dΦ3

Pint(E+ |Eγ, Π)
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• The function                              
depends on matrix elements with 
off-shell photon kinematics.


• To be calculable we need to find 
a limit where we can approximate 
with on-shell photon kinematics.

Pint(E+ |Eγ, Π)

Pint(E+ |Eγ, Π) =
α

2πEγ ∫
m+

*

m*−

dm*

m* {2(1 − [1 − cos2 θ]β2
e )(1 + T2

*)

+2(1 − β2
e cos2 θ)L2

*}

Off-shell transverse

Longitudinal 

dΓee

dE+
= ∫ dΦ3

dΓ
dΦ3

Pint(E+ |Eγ, Π)



Pint(E+ |Eγ, Π) ≈
α

2πEγ ∫
m+

*

m*−

dm*

m*
=

α
πEγ

log [ m+
*

m−
* ]

dΓee

dE+
= ∫ dEγ

dΓ
dEγ

Pint(E+ |Eγ)
dΓee

dE+
= ∫ dΦ3

dΓ
dΦ3

Pint(E+ |Eγ, Π)
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• This function + photon spectrum 
predicts the positron spectrum

• We provide error estimates in our 
paper 

arXiv:2010.09509



Main conclusions:
Longitudinal polarizations are suppressed when the electron/positron 
is nearly collinear with the photon in the rest frame. 

Transverse matrix elements can be approximated by real photon  
matrix elements provided the virtuality is “small”.  


Both conditions are satisfied as  or equivalently as  
.  The small parameters we use are   and   . 

Near the end point there is a calculable function for internal conversion.

E+ → Eγ − me
T− → 0 T−/Eγ me/Eγ



Ongoing work: 
RFG calculation of RMC on Al and Au.  

Coulomb corrections to internal conversion. 

Better understanding of sub-leading corrections 
to the internal-conversion probability

In collaboration with Richard Hill & Kaushik Borah



Many thanks to
The Intensity Frontier Fellowship program,  
Pavel Murat,  Robert Berstein,  Michael Mackenzie,   
&  Stefano Di Falco 


