Neutrino mass models at colliders in the post-ESU 2020 era

Energy Frontier Biweekly Meeting

Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3)

Universite Catholique de Louvain

October 15, 2020

Acknowledgments, Apologies, and Disclaimers

finite time constraints \implies many omissions

- Purpose: a snapshot of activities since European Strategy Update
- Main focus is on Type I (N) and Type II ($\Delta^{\pm\pm}$) Seesaws
- See references below for details + other Seesaws

source material:

- Review on ν mass models at colliders w/ Y. Cai, T. Han, T. Li [1711.02180]
- 2 European Strategy Update Chapter on ν mass models

```
w/ T. Han, T. Li, X. Marcano, S. Pascoli, C. Weiland [1812.07831]
```

Other community documents and some newer results

humble reminder: RH neutrinos (ν_R) are **not** the only explanation for tiny m_{ν} nor are they necessary (e.g., Type II Seesaw)

- ullet Lack of guidance from data \Longrightarrow broad approach needed
- E.g., models without ν_R , UV completions of NSI,

the big physics picture

In neutrino fixed-target expts, ν_{μ} beams from collimated π^{\pm} , then studied at near and far detectors

Deficit/disappearance of expected ν_{μ} (+apperance of $\nu_e/\nu_{\tau})$ interpreted as $\nu_{\ell_1} \rightarrow \nu_{\rm mass} \rightarrow \nu_{\ell_2}$ transitions/oscillations [E.g. NO ν A ν_{μ} disapp., 1701.05891]

So, neutrinos have masses $\lesssim \mathcal{O}(0.1)$ eV

Is this a problem?

Yes.

Neutrinos Masses and New Particles?

Nonzero neutrino masses implies new degrees of freedom exist

[Ma'98]

$m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

- New particles might be charged under new or old gauge symm., E.g., ν_R may have $U(1)_{B-L}$ charge and Δ_L is an $SU(2)_L$ triplet
- Particles must couple to *h* or *L*, often inducing LNV/cLFV!

the slightly-less-big picture

models that explain tiny neutrino masses (Seesaw models) are testable

models that explain tiny neutrino masses (Seesaw models) are testable, especially at colliders

for a review, see w/ Y. Cai, T. Li, and T. Han [1711.02180] as well as w/ Pascoli, et al [1812.08750]

the little picture

(our part!)

Snowmass 2013 inspired an effort to systematically modernize the collider phenomenology for Seesaw models

for example

Historically, searches for N with $m_N > M_W$ relied on $(q\bar{q})$ annihilation

Keung & Senjanovic (PRL'83)

At the LHC, a canonical signature for N: $pp \rightarrow \ell_i^{\pm} \ell_i^{\pm} + nj + \text{ no MET}$

based on seminal works by K&S, del Aguila & Aguilar-Saavedra [0808.2468], and Atre, et al [0901.3589]

a lot has happened since 2013

Plotted: Normalized production rate $(\sigma/|V|^2)$ vs heavy N mass (m_N)

For $m_N = 10$ TeV and $|V_{\ell N}|^2 \sim 10^{-3}$, then at 100 TeV, one has $\mathcal{O}(30)$ VBF events after 30 ab⁻¹! If BR× ε × \mathcal{A} ~ $\frac{1}{3}$, then $\sqrt{N_{Obs.}}$ > 3σ

Major improvements $\implies > 10 \times$ better sensitivity to LNV + cLFV

Only one example. See the big paper [1812.08750] for various flavor, Dirac vs Majorana, and sys permutations ?

How heavy is too heavy for the LHC?

Question: is a multi-TeV N too heavy for the LHC?

w/ Fuks, Neundorf, Peters, Saimpert [In Prep.]

what if there are new forces?¹ how heavy can we go?

¹See also talk by N. Okada!

Interesting observation: vast literature on collider searches for N coupling to new gauge bosons, e.g., W_R in Left-Right Symmetric Model, nearly everyone assumes that both N and W_R are resonantly produed

If new gauge mediators are too heavy, light N are still accessible

(this is a UV realization of ν_R EFT!)

Exmaple: When $M_{W_R} \gg \sqrt{\hat{s}}$ but $m_N \lesssim \mathcal{O}(1)$ TeV, $pp \to N\ell + X$ in the LRSM and phenomenological Type I Seesaw are not discernible

w/ Han, Lewis, Si, [1211.6447]; RR, [1703.04669]

• Same signature: $pp \to \ell^{\pm}\ell^{\pm} + nj + X + p_T^{\ell} \gtrsim \mathcal{O}(m_N) + \text{no MET}$

How about reinterpreting search for phenomenological Type J Seesaw?

RR [1703.04669]

At 14 (100) TeV with $\mathcal{L}=1$ (10) ab^{-1} , $M_{W_R}\lesssim 9$ (40) TeV probed DO NOT STOP SEARCHING FOR TYPE I LNV

what if ν_R do not exist?

Type II Seesaw²

²Konetschny and Kummer ('77); Schechter and Valle ('80); Cheng and Li ('80); Lazarides, et al ('81); Mohapatra and Senjanovic ('81)

The Type II Seesaw Mechanism is special: generates neutrino masses without hypothesizing right-handed neutrinos

• Important example that $m_{\nu} \neq 0 \not\Rightarrow$ that ν_R exist

The Type II Seesaw Mechanism is special: generates neutrino masses without hypothesizing right-handed neutrinos

• Important example that $m_{\nu} \neq 0 \not\Rightarrow$ that ν_R exist

Hypothesize a scalar $SU(2)_L$ triplet with lepton number L=-2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2} \Delta^{++} \\ \sqrt{2} \Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi^\dagger \hat{\Delta} \cdot \Phi^\dagger + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\sqrt{2}\langle\hat{\Delta}
angle = extstyle extstyle extstyle ag{\mu_{h\Delta} v_{
m EW}^2}{\sqrt{2}m_{\Delta}^2}$$

which leads to left-handed Majorana masses for neutrinos

$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{L^{c}} \hat{\Delta} L = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \left(\overline{\nu^{jc}} \quad \overline{\ell^{jc}} \right) \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} v^{i} \\ \ell^{i} \end{pmatrix}$$

$$\ni -\frac{1}{2} \left(\sqrt{2} y_{\Delta}^{ij} v_{\Delta} \right) \overline{\nu^{jc}} v^{i}$$

$$= m^{ij}$$

Fewer free parameters \implies richer experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

• E.g., Δ branching rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

$$\mathsf{BR}(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_i^{\pm}) \sim y_{\Delta}^{ij} \sim (U_{\mathrm{PMNS}}^* \tilde{m}_{\nu}^{\mathrm{diag}} U_{\mathrm{PMNS}}^{\dagger})_{ij}$$

NEW: a revised outlook for both $\sqrt{s} = 14$ TeV and 100 TeV!

w / Fuks and Nemevšek [1912.08975]

- At LHC with $\mathcal{L}=5$ ab⁻¹, 3σ sensitivity up to $m_{\Lambda}\sim 1.5$ TeV
- At $\sqrt{s} = 100$ TeV with $\mathcal{L} = 30 50$ ab⁻¹ $\implies m_{\Lambda} \approx 8 9$ TeV
- Warning: can be improve for specialized final state / parameter space

Lots of improvement since last Snowmass. What has changed?

Improved outlook for collider tests of LNV and cLFV stems from:

- New channels, e.g., VBF, GF, $W/Z/h/\gamma$ associated production
- New kinematic limits, e.g., off-shell portals, boosted topologies
- Predictions for both Dirac and Majorana particles w/ LNV and cLFV
- Quantitatively reliable descriptions of jets, kinematics, and rates

³UFOs encode Feynman rules for mainstream event generators, e.g. MadGraph, to simulate BSM (not just colliders)

Improved outlook for collider tests of LNV and cLFV stems from:

- New channels, e.g., VBF, GF, $W/Z/h/\gamma$ associated production
- New kinematic limits, e.g., off-shell portals, boosted topologies
- Predictions for both Dirac and Majorana particles w/ LNV and cLFV
- Quantitatively reliable descriptions of jets, kinematics, and rates

Part of this stems from improved MC support!

- Ongoing efforts within FeynRules and MadGraph MC collaborations
- Mainstream tools with widespread use and technical support

Available UFOs3

- Type I Seesaw feynrules.irmp.ucl.ac.be/wiki/HeavyN (Requested/used by ATLAS+CMS)
- Type II Seesaw feynrules.irmp.ucl.ac.be/wiki/TypellSeesaw (Requested/used ATLAS)
- Left-Right Symmetry feynrules.irmp.ucl.ac.be/wiki/EffLRSM (Requested/used ATLAS)
- Generic W'/Z' feynrules.irmp.ucl.ac.be/wiki/WZPrimeAtNLO
- ... with more in development (collaborators and friends are welcome!)

Summary

Lack of clear guidance from data and theory means we must take a broad, open approach to uncovering the origin of tiny ν masses.

- Colliders are incredibly complementary to oscillation and $0\nu\beta\beta$ expts
 - Direct production of Seesaw particles
 - ► Test UV realizations of low-scale neutrino EFTs / NSIs
- The European Strategy Update has officially concluded
 - Lots of encouraging projections on collider sensitivity to LNV and cLFV
 - ▶ New analysis techniques ⇒ new territory for cLFV and LNV
 - ightharpoonup N, $H^{\pm\pm}$, W_R , Z_{B-L} , $T^{0,\pm}$ masses up to 10-50 TeV at $\sqrt{s}=100$ TeV
 - Studies aided by publication of user friendly simulation tools
- The Snowmass Process is underway!
 - Community studies are iterative and we plan to keep up the work!
 - ▶ Lots not covered todays, so go check out the review! [1711.02180]

Thank you.