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Abstract

Cosmic-ray muon imaging has been used to non-destructively examine the Pyramids
of Khufu and Khafre on the Giza Plateau; the EGP project will continue this line of
research by undertaking a full tomographic scan of the former and by doing so will
increase the sensitivity of the technique by upwards of two orders of magnitude. For
this purpose, a muon telescope using triangular (vernier) detector cells far outperforms
one with rectangular cells, providing an angular and positional RMS improvement by
a factor of 4 for the same cost per unit area. A refinement algorithm was developed
to handle tracks that produce secondaries. The triangular detector yields a positional
resolution for a back-projection to the center of the pyramid of less than 20 cm, ensuring
that a feature large enough to be of significance will still be seen by the telescope. This
method is shown to be able to accurately and precisely reconstruct tracks of muons
that pass through the King’s Chamber, Queen’s Chamber, and Grand Gallery.
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1 Introduction

The construction of the Great Pyramid, the oldest of the Seven Wonders of the
ancient world and the only one left standing, still stirs debate among archaeologists. Many
mysteries pertaining to its construction still remain. This begs the question: does the inside
of the pyramid contain something of interest, something that could explain how the ancient
Egyptians built these marvels?

Such a question has been difficult to answer, as excavating the pyramids would have
dramatic economic and cultural consequences for Egypt. However, the invention of muon to-
mography by Alvarez et al.—using cosmic-ray muons to scan the inside of the pyramid—may
be the solution. This paper uses physics simulation engines to investigate the detectors to be
used by the Exploring the Great Pyramid (EGP) Mission, a collaboration between Fermilab,
the University of Chicago, the University of Virginia, and the Oriental Institute.

1.1 Historical Background

In 1970, L. Alvarez et al. published an article in Science that detailed their scan of
Khafre’s pyramid using cosmic-ray muon radiography [1]. This experimental setup involved
placing two 1.8-meter square spark chambers in Khafre’s Belzoni Chamber, which lies near
the center of the pyramid’s base. Alvarez’ main goal was to locate previously undiscov-
ered chambers; this was driven by the apparently stark differences in internal complexity
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between this pyramid and the Great Pyramid, its predecessor. While the study found no
such chambers, the technique itself was shown to be successful.

Alvarez’ exploration was followed in 2017 by the ScanPyramids collaboration, whose
study of the Great Pyramid identified a previously unknown void above the Grand Gallery
[2]. This void, which is a minimum of 30 m in length and has a cross-section like that of
the Grand Gallery, is the first major structure to be discovered within the pyramid since the
1800s. The ScanPyramids group also used muon radiography as their primary tool.

1.2 Motivation

Despite the considerable success of these projects, numerous open questions remain
regarding the Great Pyramid’s interior and construction. Unlike previous experiments, EGP
proposes to apply fully three-dimensional tomographic imaging techniques; this will allow
us to differentiate not only void from stone, but also much smaller variations in density.
Moreover, the EGP detectors will possess about 100x the area of those used by the Scan-
Pyramids team, yielding appreciably higher resolution. The combination of these factors
should provide insight on the nature of the ScanPyramids void, the techniques used to build
the pyramid, and the presence of additional unknowns within its structure.

1.2.1 Possibility of a Second King’s Chamber

Micro-gravity imaging has revealed curious density variations near the pyramid’s peak [10].
These variations suggest the existence of another King’s Chamber (henceforth referred to as
the Phantom Chamber). Its existence was simulated in our Monte Carlo to test the detectors
capability to spot this unknown.

2 The Great Pyramid and Giza Plateau

Here, we discuss the geography of the Giza Necropolis and describe the development
of a highly detailed model of the Great Pyramid’s interior. The latter will be incorporated
into future simulations, which will allow us to more accurately predict the performance of
the final detector design.

2.1 The Great Pyramid Model

For the past two months, a CAD model of the interior of the Great Pyramid of Giza
has been under development to define where there are known voids and material changes
within the pyramid and to provide a baseline to compare with the tomography results.
Illustrations of this model are shown in Figure 1. The initial idea was to add in a few
details to an existing model, but to save the time of checking the accuracy of the existing
model, a new one was begun. Using primarily the plans from Randaldi’s L’architettura Delle
Piramidi Menfite from 1965, a Fusion 360 model was created. One of the biggest challenges
was drawing up the Relieving Chambers above the King’s Chamber (see Figure 2). This
was done by scaling an image of the profiles of the granite blocks that support the relieving
chambers and using the loft tool to create bodies from those profiles. The excavation sites,
the well shaft tunnel, the North air shaft from the King’s Chamber, and Caliph al Ma’mun’s
forced entry were all areas for which the plans lacked detailed information. Using a similar
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technique to how the granite blocks were created, images of the outlines of these areas were
scaled up and traced to create the voids. Fewer details were included below the ground
level, as those areas will not be measured or studied. The next steps include fleshing out the
exterior of the pyramid and creating a smaller, simplified model to practice with.
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Figure 1: Images of the full CAD model of Khufu’s Pyramid.
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Figure 2: The Grand Gallery (left) and King’s Chamber with additional relieving chambers
(right) as incorporated into the CAD model.

2.2 Giza Plateau - Geography

The geography in the pyramid’s vicinity provides insight regarding possible detector
placements. Below is a plan view of the pyramid and surrounding features, as well as
suggested detector locations.

There are a few obstructions surrounding the pyramid, namely on the southern side;
the boat museum and other buildings may cause interference. The western and northern sides
are relatively unobstructed, however, providing us with two adjacent sides with a sufficient
view to provide a precise tomographic reconstruction.
Below are images of the pyramid and surroundings taken using Google Earth.
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Figure 3: Plan view of the pyramid and surroundings, with significant features and suggested
detector placements labeled.

Figure 4: Ground view of the west side of the pyramid (looking north), near the face.

7



Figure 5: Ground view of the west side of the pyramid (looking north), on the road.

Figure 6: Ground view of the east side of the pyramid (looking north), near the face.

Figure 7: Ground-side view of the south side of the pyramid (looking east), near the face.
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Figure 8: Ground-front view of the south side of the pyramid (looking north), on the road.
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3 Detector Configuration

The detector arrangement is shown in Figure 9.

Figure 9: Diagram of detectors in cargo container.

The configuration consists of two banks, separated by 2 m, each containing two de-
tectors: one with horizontal modules and one with vertical modules. Each module has a
width of 80 cm, and a total of 40 counters. For the rectangular detectors, each counter has
a width of 2 cm, creating a 2 cm x 2 cm grid in each bank. For the vernier detectors, the
triangular face of each module has a base of 4 cm and a height of 2 cm (their arrangement
will be detailed in Section 5.2), covering the same area with the same number of modules
as their rectangular counterparts. Horizontal modules have a length of 4.8 m, while vertical
strips have a length of 2.4 m. Conversely, there are 12 vertical modules per bank, with only
6 horizontal per bank.

The cargo container holding these modules has 5 mm thick aluminum walls. Four
cargo containers will be stacked to form a 2x2 array, creating a total detector area of 92.16
m2.
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4 Coordinate System

The coordinate system used in our simulations is shown in Figures 10, 11, and 12.
Figures 10 and 11 include plan and elevation views of the pyramid, with proposed detector
setup for reference. We make use of both global and local coordinates; the global Cartesian
coordinates are designated (X,Y,Z), and their polar counterparts, used for describing muon
trajectories, are (θ,φ). The global coordinates’ origin is located at the center of the pyramid’s
base, and the X axis points east, while the Y axis points north and the Z axis points upwards.
The local Cartesian coordinates we use are (u,v); they span a given detector plane, with the
origin at the bottom left corner of that plane from the perspective facing the pyramid.

Figure 10: Elevation view of coordinate system used for all simulations, with the pyramid for
reference. We define both local coordinates (u,v) - to describe locations on a given detector
plane - and global coordinates (X,Y,Z), as well as polar coordinates (θ,φ) to describe muon
trajectories. The origin of the global coordinates is at the center of the pyramid’s base, while
the origin of the local coordinates is at the corner of the relevant detector plane (see Figure
12).
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Figure 11: Plan view of the coordinate system. The global X axis points east, while the
global Y axis points north; Z points upwards out of the page. The orientation of the local u
axis varies by specific container placement, as shown, and the local v axis always points up.

Figure 12: Detailed coordinate system.

5 Simulation Parameters

We developed two toy models - one based on a rectangular scintillator design, and the
other based on a triangular or vernier design. The former was simulated with the GEANT4
toolkit [5, 6]; the latter used G4beamline [7]. Supporting analysis was performed in Root,
and visualizations of the rectangular design were produced with Paraview. The primary
objectives of this study were to investigate the positional and angular resolution needed in
light of multiple scattering effects, and to determine which of the two strip designs best
fulfilled these requirements.
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5.1 Rectangular Model

As shown in Figure 13, the rectangle-based toy model consists of two 1 m x 1 m
detectors. These correspond to the detectors on the two walls of the cargo container discussed
above, so there is a 2 m gap between them. Each detector is composed of two planes of 50
rectangular scintillator strips, and each strip has dimensions of 2 cm x 2 cm x 1 m. In each
detector, one set of strips is vertical and the other is horizontal, which yields a set of u and
v coordinates for every hit (see section 8.1 for details). These detectors sit in a vacuum; no
container walls, electronics, or fibers are included in the simulation.

G4ParticleGun, GEANT’s simple built-in particle gun, serves as the muon source for
the model. This gun produces one muon at a time, with exactly the same initial momentum
and position each time. In a given run of the simulation, a pre-determined number of these
identical muons are fired at the detectors, and information about their energy deposition in
the scintillator strips is recorded (see below).

Figure 13: The simulation contains two detectors, each consisting of two 1 m x 1 m scintillator
planes and each plane composed of 50 2 cm x 2 cm x 1 m strips; there is a 2 m gap between
the first and second detectors. In the above visualization, tracks from 100 4 GeV muons and
all of their associated secondaries are shown, each muon beginning to the left of detector 1.
(Note: the secondary particle removal discussed in section 5.1.1 applies only to the concrete
volume and is therefore not relevant here.)
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For studies involving multiple-scattering effects from the pyramid itself, we added a
concrete block 25 m upstream of the detectors to simulate the pyramid. This is shown in
Figure 14. We varied the thickness of this block in order to represent potential voids at
different depths inside the pyramid; a 115-m block corresponded to a hypothetical chamber
at the pyramid’s center and was therefore the greatest thickness of interest (see Figure 10).

Figure 14: A concrete block that served as a pyramid dummy was later added 25 m upstream
of the detectors. The width and height of this block matched that of the detectors; its length
was varied between 1 and 115 m. In this visualization, the block is 25 m long and is shown
with tracks from 10 50 GeV muons and their secondaries. No secondaries that were generated
in the concrete with energy greater than 10 MeV are shown (see section 5.1.1 for details).
The detector is shown in gray at the right side of the image.
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5.1.1 Removing Tracking of Secondary Particles to Improve Simulation Speed

Particularly with the addition of the concrete block discussed above, simulation speed became
a major concern. Since most secondary particles produced inside the concrete have no impact
whatsoever on the results, it is completely unnecessary to track them for our purposes. So,
a cut was implemented within the concrete volume that resulted in all secondaries below the
threshold energy being killed immediately upon creation. Table 1 details the timing results
from these changes. For most runs with concrete, a 10-MeV cutoff was used.

Concrete Thickness (m) All Secondaries 10 MeV Sec-
ondary Cutoff in
Concrete

10 GeV Secondary
Cutoff in Concrete

50 User=408s
Real=1830s
Sys=322s

User=93.1s
Real=424s
Sys=76.8s

User=36.7s
Real=147s
Sys=31.2s

25 User=227s
Real=954s
Sys=178s

User=48.0s
Real=199s
Sys=40.6s

User=18.5s
Real=72.6s
Sys=15.9s

10 User=86.2s
Real=360.s
Sys=67.4s

User=19.0s
Real=82.5s
Sys=16.0s

User=7.54s
Real=32.3s
Sys=6.64s

5 User=45.0s
Real=183s
Sys=35.5s

User=9.50s
Real=42.5s
Sys=7.98s

User=4.03s
Real=15.9s
Sys=3.35s

Table 1: Raw timing data from runs of 1,000 50-GeV muons with various concrete thick-
nesses. Introducing a 10-MeV cut on secondaries generated inside the concrete resulted in a
4x speedup over keeping all secondaries, while a 10-GeV cut, which essentially eliminated all
concrete-generated secondaries, further increased the simulation’s speed by about another
factor of three. Note: in the above, “real” refers to the total time elapsed from the simu-
lation’s start to its finish (i.e., wall clock time). “User” and “sys” refer to CPU time spent
outside and inside the Unix kernel, respectively; their sum represents the total CPU time.

5.2 Vernier Model

This simulation replaced the rectangular scintillator cells with triangular ones to uti-
lize multiple hits and dE

dx
in the algorithm. The face of each cell had 4 cm base and 2 cm

height, and the length of each cell was 2.52 m. Each cell had a cylindrical hole running
along the length of the prism, with diameter 1.2 mm, located 8.5 mm above the base of the
triangle. Each plane was 2.52 m x 2.52 m and contained 126 cells, arranged as shown in
Figure ?? to form the plane.
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Figure 15: Zoomed-in plan view of detector planes 1 and 2. Cells are isosceles triangular
prisms with 40 mm base and 20 mm height, and 2.52 m in length. Each cell has a hole 10 mm
above the base to simulate the lack of dE

dx
in the scintillator due to the wavelength-shifting

fiber

Each bank consisted of 2 detector planes, rotated 90 degrees relative to one another
to track Z- and Y-coordinates, respectively. There were 2 banks in total, separated by 2 m.

Figure 16: Plan view of all 4 detector planes. There are two banks, each of which has
two planes that are rotated 90◦ with respect to one another, and are otherwise identical in
construction and configuration. The banks are separated by 2 m.

Muons were fired every 10 ns, and were positioned and angled such that they hit both
banks. In some cases, this required a displacement in the second detector bank.
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Figure 17: Plan view of muons at θ, φ = 45◦ with displaced back detector bank, entering
from the left.

The algorithm used to determine θ, φ, as well as x, y, and z position on each detector
plane was as follows.

For each collision within a detector cell, the time, detector cell number, and energy
deposited were recorded from the simulation. The energy deposition was converted to pho-
toelectrons with a conversion rate of 25 PE/MeV, and a gaussian smearing with RMS 1√

50
.

After the conversion, if the energy deposited produced a signal that was below the threshold
of 2.5 PE, the collision was discarded.

Collisions in the same plane were grouped in 3 ns “time slices.” In each time slice,
collisions were removed if they were not contiguous around the most energetic collision. Time
slices were connected between planes to form a muon track. Time slices between planes in
the same bank were within 3 ns of one another, while time slices in different banks were
between 5 and 15 ns apart.

Once these time slices were grouped, each time slice was cut to only two cell hits with
a refinement algorithm outlined in Section 6.2. To determine a y- and z-coordinates for each
bank, the energy-weighted positional mean was taken:

E1P1 + E2P2

E1 + E2

,

where E and P are the energy readout and center position for their respective detector cells.
An x-coordinate for each plane was determined with the following equations.
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Figure 18: Diagram of muon track in vernier-cell detector with labels.

Since energy deposited is proportional to path length, we can find X and Z with the
equations

X = Xdet +
E1H

E1 + E2

(1)

Z = P2 + ∆Z =
E1P1 + E2P2

E1 + E2

(2)

Trigonometry was then used to determine the azimuthal and zenith angles (φ and θ,
respectively), and to fully reconstruct the muon path vector.

6 Multiplicity

Appropriately reconstructing the position and angle of an incident muon depends
heavily on the number of hits it generates in the detector planes. We therefore investigated
the correlation between the hit multiplicity of a particle and its angle with respect to the
detector.
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6.1 Rectangular Model

Figure 19: The mean hit multiplicity for each of the four detector planes, plotted as a
function of incident angle. Each run consisted of 10,000 50-GeV muons, which were scanned
across a full cell width (2 cm).

For the rectangular scintillator model, the analysis described above was repeated
for three different cases: 1.) allowing no secondary particles (even from interactions in the
scintillator) and including no concrete, 2.) allowing secondary particles, but including no
concrete, and 3.) including both secondaries (up to the cut described in 5.1.1) and concrete.
All data used an incident muon energy of Eµ = 50 GeV, and for this study only, the detector
size was increased to 3 m x 3 m to accommodate the angles of interest. The size of the
individual scintillator strips, as well as the 2-m gap between the first and second banks,
remained unchanged. For the trials involving concrete, the block was positioned at the same
angle as the muon beam - i.e., for every run, the particles passed through exactly 25 m of
concrete, regardless of their angle with respect to the detectors. Unlike the other studies
discussed here, the beam was scanned across a full cell width during each run.

Figure 19 shows the mean multiplicity in each individual plane for the three scenarios
considered. All four planes show a consistent increase in multiplicity as incident angle
increases. The trend is present even for runs with no secondary particles, which implies that
it stems mainly from the geometry of the situation.

One simple approach to calculating hit position entails using only those events that
result in a single hit per plane and rejecting the remainder. We refer to this as the “singles
cut.” Table 2 and Figure 20 depict the percentage of events that pass this cut in the three
simulation scenarios discussed above. For angles close to normal, the majority of events
survive; however, there is a sharp decrease in surviving events for wider angles. This is
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consistent with the multiplicity trends for individual planes (see above). So, while the singles
cut is useful for near-normal incidence, it should not be applied to events with arbitrary
angles. For the latter, a weighted mean or clustering algorithm is necessary. In section 8.1,
only normal muons were used, and the singles cut was applied.

Angle (Deg.) No Secondaries Secondaries, No Concrete Secondaries and 25 m. Concrete
0 96.81 75.080 71.99
10 90.73 68.55 62.87
20 78.11 59.80 37.99
30 65.54 49.12 29.56
40 51.99 39.12 —

Table 2: For each of the above three situations, the percentage of events that survive if we
limit to only one hit per plane in all four planes. This is the “singles cut.” Here, “angle”
refers to the amount by which both θ and φ differ from normal incidence.

Figure 20: The fraction of events that pass the singles cut, plotted as a function of angle
from normal incidence. The sharp decrease in surviving events as angle widens indicates
that the singles cut is not appropriate for most muons of interest.
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6.2 Vernier Model

The multiplicity (number of cells hit per plane) of a muon track largely depends on
the track’s angle and position along the base of the cell. Due to the triangular geometry, the
trends are periodic, as expected. This causes the angular RMS to vary with position along
the cell. To get an accurate figure for the detector’s angular RMS, the position of the muons
was scanned along the base of the triangle for each trial. Muons were fired at intervals of
0.4 mm across a range of 40 mm, spanning a full cell base.

Figure 21: Muons at normal incidence and θ, φ = 30◦ scanning along cell base.

Multiplicity also varies as muons produce secondaries. Investigating the data regard-
ing secondary collisions gives insight into refining time slices so that only muon collisions
remain. For these plots, 0 mm indicates the center of the red triangle, moving up in Figure
21.

Figure 22: Multiplicity vs Position along cell for muons at normal incidence (Linear Scale).
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Figure 23: Multiplicity vs Position along cell for muons at normal incidence (Log Scale).

Figure 24: Multiplicity vs Position along cell for muons at θ, φ = 10◦ (Linear Scale).
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Figure 25: Multiplicity vs Position along cell for muons at θ, φ = 10◦ (Log Scale).

Figure 26: Multiplicity vs Position along cell for muons at θ, φ = 20◦ (Linear Scale).
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Figure 27: Multiplicity vs Position along cell for muons at θ, φ = 20◦ (Log Scale).

Figure 28: Multiplicity vs Position along cell for muons at θ, φ = 30◦ (Linear Scale).
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Figure 29: Multiplicity vs Position along cell for muons at θ, φ = 30◦ (Log Scale).

The fraction of muons that hit 3 or more connected cells in at least one plane reaches
as high as 25% in some cases. To avoid omitting them outright, which would cause a sig-
nificant data loss, a refinement algorithm was developed. In each cluster of hits, the most
energetic collision was chosen, and then paired with the most energetic of the adjacent col-
lisions. The charts below investigate the success rate of this algorithm.

Figure 30: Maximum Energy bar charts for muons at normal incidence.
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Figure 31: Maximum Energy bar charts for muons at normal incidence.

Figure 32: Maximum Energy bar charts for muons at normal incidence.

Figure 33: Maximum Energy bar charts for muons at normal incidence.

The algorithm successfully identifies both muon collisions for 45% of clusters with 3
or more hits. Thus, for particular angles and positions along the cell, up to 12% of tracks
might be inaccurately reconstructed due to secondary generated by the muon. However,
because these reconstructions are only erroneous when one muon track cell has significantly
more deposited energy than the other, they do not cause significant error, as shown below.
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Figure 34: Comparison of angular resolution histograms with sum of gaussians fits. On
the left is the resultant histogram from omitting high-multiplicity hits; on the right is the
distribution obtained when using the refinement algorithm.

In this extreme case, where the greatest number of secondaries are produced, the
RMS improvement is very slight; it is less than 1

10
of a milliradian. This is likely a result of

the algorithm for calculating RMS, as the distribution is effectively identical in both plots.
However, omitting high multiplicity hits causes a 9% cut in muon track use. Thus, the
refinement algorithm is the more efficient option.

6.3 Counter Response

6.3.1 Rectangular Model

As the previous discussions imply, multiplicity is heavily dependent on the geometry
of a given event in both rectangular and vernier detectors. To explore this pattern in greater
detail, we calculated the expected response of each counter type, in terms of energy deposi-
tion, given a variety of incident angles and hit positions. The effects of secondary particles
were disregarded; only the energy deposited by the primary muon was considered.

The rectangular counter response map is shown in Figure 35. Data for this table
were obtained by calculating the salient path length in two adjacent scintillator strips, then
converting this quantity to MeV based on 〈dE

dx
〉 for muons in polyvinyltoluene [4]. Green

table entries indicate situations that result in only one strip with charge, while those in blue
indicate situations in which both strips have some charge. As with the simulated multiplicity
data in Figures 19 and 20, greater angles are more likely to yield two strips hit; this also
makes sense geometrically.
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Figure 35: A map of expected energy deposition (MeV) in two adjacent rectangular scin-
tillator strips as angle and position vary. Here, “angle” refers to the amount by which the
incoming muon differs from normal incidence; “position” refers to the distance between its
initial hit position and the edge of the strip. Cases that yield only one strip with charge are
shown as green table entries, and those that yield two are shown in blue.
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6.3.2 Vernier Model

Energy response as a function of position along the cell is plotted below.

Figure 36: Energy in photoelectrons as a function of position along the cell base. 0 mm is
the edge of the cell, moving up.

The response behaves as predicted, with uncertainties created by light-yield smearing.
The rounded tip is likely caused by the fiber-hole and will be exacerbated by the extrusion,
but does not result in significant tracking error.

7 Intrinsic Resolution: Vernier Model

7.1 Angular RMS

The angular RMS values for select energies and angles were tabulated, using the
refinement algorithm. The muon track’s position was scanned across the base of the cell as
shown in Figure 21.
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Figure 37: Angular RMS Table for vernier detector. Energies are in GeV. Angles are mea-
sured in degrees from normal incidence. Angular RMS is in milliradians.

7.2 Positional RMS

For 50 GeV muons, the positional RMS as a function of position along the cell is plotted in
Figure 38.

Figure 38: Plot of algorithm-calculated position vs cell base position of position-scanned
triangles, with error bars. Colors added for visualization; 0 mm indicates the apex of the
green triangle. The calculation is most precise at the peaks of triangles, as expected.
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As predicted by the multiplicity plots in Section 6.2, the RMS is best at the peaks of
either triangle.
Histograms of positional RMS for normal incidence and incident angles of 15, 30, and 45
degrees are plotted in Figure 49. These trials included a full positional scan of the cell base.

Figure 39: Histogram of positional error of muons at normal incidence and at 15◦, 30◦, and
45◦ from normal incidence.
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The positional error summed over the above angles is plotted in Figure 40.

Figure 40: Histogram of positional error of muons across 15◦ increments.

8 Positional Back-projection Comparison with Con-

crete Scattering

One of the toy model’s primary goals is to determine the strip size needed for optimum
detector resolution. A detector with sufficient resolution should result in an uncertainty
comparable to or somewhat smaller than any multiple scattering effects from the pyramid;
however, a detector with too-fine resolution results in an unnecessarily high channel count
and therefore unnecessary cost. So, it is of interest to calculate the particles’ hit positions at
the detector planes, back-project the resulting trajectory to its starting place (or any other
point desired), and compare the uncertainty inherent in this process to that arising from
scattering.

8.1 Rectangular Model

As discussed in section 6.1, these studies used only those events that survived the
“singles cut,” i.e., those that yielded exactly one hit per detector plane. We therefore took
the hit position in a given plane to be the center of the strip with non-zero energy deposition.
Each plane gave either a u or a v coordinate (see section 4.1), and these were combined to
give one point in space for each detector.
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The RMS error associated with a rectangular strip of width A is given by

σ =
A√
12

(3)

so, for the 2-cm strips used here, σ = 0.02m√
12

or c. 0.01 m. The calculated positions and their
uncertainties can be back-projected to any plane by simply inserting them into the equation
of a line (see Figure 41):

X −XA

XB −XA

=
Y − YA
YB − YA

=
Z − ZA
ZB − ZA

(4)

where (XA, YA, ZA) and (XB, YB, ZB) are the global coordinates corresponding to the
hit positions at detectors one and two, respectively, and (X, Y , Z) are the coordinates of
the back-projected point. The result is a “circle of confusion,” determined by the radius
rY in Figure 41, that represents the detector system’s inherent uncertainty at the distance
in question. The goal, then, is to find a strip width for which this radius does not differ
substantially from the deviation caused by multiple scattering.
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Figure 41: A 2D sketch of how the RMS “circle of confusion” radius is calculated. Since the
strip width is the same in all planes, σ is the same for detectors one and two.

Figure 42: Preliminary results from the back-projection algorithm, using a run of 10,000 4-
GeV muons and no concrete. The only events used were those that produced one hit strip per
detector plane; the beam was placed at normal incidence at the center of the target strips.
Trajectories were then projected a distance of 140 m, corresponding to the hypothetical
center of the pyramid and the origin of the global coordinate system.

To validate the Root macro that back-projects these trajectories (without uncertain-
ties), we began with a run of 10,000 4-GeV muons at normal incidence to the detectors, and
this run did not include concrete. The calculated hit positions were back-projected 140 m,
which corresponds to a point 0.49 m above the - here hypothetical - center of the pyramid’s
base (see Figs. 10, 11). Two one-dimensional histograms containing the resulting Y and
Z coordinates are given in Figure 42. In both dimensions, the majority of events yielded
correct starting positions (Y = -0.01 m and Z = 0.49 m respectively). Both distributions
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also have a very few values in non-central bins. The discrete locations at which these values
occur, combined with the fact that they vanish for higher values of Eµ, indicate that they
arise from muons that scatter to strips adjacent the target. So, the algorithm successfully
back-projects trajectories as desired.

8.1.1 Example Study: Void 25 m from Pyramid Surface

Here we consider an example scenario in which there is a void of interest 25 m from
the pyramid’s surface, and we compare the back-projection uncertainty arising from multiple
scattering to the RMS error inherent in the scintillator strips.

For the purposes of this simulation, our scenario can be modeled by a 25-m long
concrete block placed 25 m from the first plane of detector one. Initially, for simplicity, the
particles exiting the pyramid were represented by a normal beam of 10,000 50-GeV muons
placed just upstream of the concrete (see Figure 14, for example). These trajectories were
then back-projected from their calculated hit positions to the far end of the concrete, a total
of 50 m from detector one. Figure 43 shows the results of this projection.

Figure 43: Results from the back-projection algorithm for a run including a 25-m block of
concrete. The 10,000 50-GeV muons from this run were back-projected to the far end of
the block - i.e., 50 m from detector 1 and 89 m from the hypothetical pyramid center. The
resulting distribution is a reflection of multiple-scattering effects in the concrete; comparing
the standard deviations of this and similar results to the RMS error of the scintillator strips
provides insight on the strip size needed for sufficient position resolution.

Both plots are again centered on the beam’s true starting point (as before, Y = -0.01
m and Z = 0.49 m). The continuous distributions in this case, however, directly reflect the
effects of multiple scattering inside the concrete.

Using the calculation method outlined in Figure 41, the RMS circle of confusion radius
coming solely from the detector resolution is approximately r = 0.29 m. This is slightly larger
than, but quite similar to, the standard deviation of about 0.22 m in both plots above. In
this highly specific scenario, then, a 2-cm rectangular scintillator design would likely have
sufficient resolution. However, a thinner rectangle or a triangular design might still provide
advantages, as we do not want the inherent detector resolution to affect our capability of
detecting various unknowns in the pyramid. More work is needed to settle this question.

35



8.2 Vernier Model

New trials were run without positional scanning to determine positional resolution.
Muons were oriented such that they were at y = z = 1.27m when halfway between the
detectors, as shown:

Figure 44: Plan view of muons at normal incidence and at θ, φ = 30◦ passing through the
point (1 m, 1.27 m, 1.27 m).

For trials with concrete, the concrete was placed and angled such that the muon trav-
eled perpendicular to the length of the concrete, and thus path length through the concrete
did not vary with angle. All secondaries generated in the concrete were killed.

Figure 45: Visualization of concrete trials - left is 5 m concrete and muons at normal inci-
dence, right is with 1 m concrete and muons at θ, φ = 30◦.

8.2.1 Example Study: Void 25 m from Pyramid Surface

First, to compare to the example study from section 8.1.1, a 50 m back-projection
(25 m from the surface of the pyramid) was done with and without a 25 m concrete block.
Muons traveled normal to the concrete, and had incident energy 50 GeV (before traveling
through concrete). This was compared to 50 GeV muons passing through no concrete. Below
are the positional contour plots for both trials.
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Figure 46: Comparison of 50 m positional projections of 50 GeV muons at normal incidence
passing through 0 m concrete and 25 m concrete.

The positional RMS without concrete is significantly smaller than that with concrete,
so the inherent uncertainty in the detector is negligible in this scenario. Thus, the vernier
detector performs better than the rectangular cell detector and is sufficient for this example.
Further trials with concrete are discussed in Appendix A.2.

8.2.2 Back-projections to Significant Features

Here, we consider the path of a muon that reaches our detectors from a given notable
feature within the pyramid. We first found the expected RMS multiple scattering of the
particle analytically; then, we compared this value with the results of a simulation which
studied scattering based on a concrete pyramid dummy and back-projected the inherent
detector uncertainty to the relevant location in the pyramid.

Table 3 shows the calculated approximate distance from various chambers of interest
to the closest detector, as well as the length of the path in the pyramid that a muon travels
to reach the center of that detector from the feature in question. The resulting multiple
scattering for muons of 50 and 150 GeV is also given. To calculate all distances and path
lengths, we assumed that there was one cargo container centered on each side of the pyramid,
as in Figure 11, and that each detector was 3 m. in height. To convert the pyramid path
length from m. to radiation lengths, we assumed that the pyramid was composed of solid
concrete, which has a characteristic radiation length of 0.1155 m [4].

From this table and the following equation for RMS of multiple-scattering of muons
(used in the final two columns):

σθ =
0.0136

E

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
(5)

where σθ is in radians, E is muon energy in GeV, x is path length, and X0 is radiation
length (0.1155 m for concrete - see above), we deduce that the angular scattering of muons
from these features eclipses the RMS error in the detector. Simulated back-projection com-
parisons with and without concrete to these locations is shown in Figures 47 through 50.
Muon energies ranged from 5-150 GeV upon hitting the detector.
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Feature (Xf , Yf , Zf ) Closest
Detector

Distance
to De-
tector
(m)

Path
Length
in Pyra-
mid
(m)

PL in
Pyramid
(rad.
lengths)

RMS
Multiple
Scat-
tering -
50 GeV
(millira-
dians)

RMS
Multiple
Scat-
tering -
150 GeV
(mr)

King’s
Chamber

(2.44, -15.0, 49.9) South 134 94.0 814 9.74 3.24

Queen’s
Chamber

(4.80, -3.88, 27.9) East 138 106 918 10.4 3.46

Grand
Gallery

(7.15, 16.0, 40.9) North 130 93.9 813 9.74 3.24

Phantom
Chamber

(0, -10.0, 120.) South 183 30.6 265 5.37 1.79

Table 3: Calculated path length and multiple scattering in the pyramid for a muon coming
from various features of interest. For the three final columns, we used concrete as a stand-in
for the material of the pyramid.

Figure 47: Positional back-projection to King’s Chamber from South, with and without
concrete.
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Figure 48: Positional back-projection to Queen’s Chamber from East, with and without
concrete.

Figure 49: Positional back-projection to Grand Gallery from North, with and without con-
crete.

Figure 50: Positional back-projection to Phantom Chamber from South, with and without
concrete.
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9 Toy Model: Summary

9.1 Discussion

While multiplicity is only a source of error for the rectangular detector, the vernier
model turns it into an advantage, allowing a more accurate reconstruction of tracks. The
vernier refinement algorithm also ensures that multiplicity is not as significant a cause of
uncertainty as in the rectangular case. This fundamental difference in algorithm allows the
vernier detector to far outperform the rectangular, as exemplified by the example study with
a simulated void in Section 8. For significant features that are known to exist within the
pyramids, the resolution of the vernier detector is greatly outweighed by the uncertainty
introduced by the effects of multiple scattering. This is true in most possible cases. The
RMS of muons scattering in material can be approximated analytically by Equation 5. The
results of this equation for select energies and lengths of concrete are tabulated below.

Figure 51: Tabulation of expected scattering RMS according to Eq. ?? for select energies
and lengths of concrete. RMS is in milliradians.

The bottom-left corner of the table generally contains cases where the effects of scattering
and the vernier uncertainty are comparable. However, the angular uncertainty (as shown in
Figure 37) is still on the order of a milliradian, ensuring that for a 125 m back-projection
(near the center of the pyramid), the vernier would still accurately track muons to within
13 cm, allowing it to see any voids large enough to be of interest.

The cost estimate for the scintillator cells is a total of approximately $580k (not
including wavelength shifting fibers). There is virtually no difference in cost between using
triangular or rectangular extrusions.
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9.2 Conclusions

The vernier model detector is the superior detector design. For the same cost per unit
area, it provides an improvement in back-projection resolution by more than a factor of 4.
Its uncertainty is dominated by the effects of multiple scattering in most cases; nonetheless,
it can accurately track muons to within 13 cm of their actual position.
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A Appendix A

A.1 Variations between θ and φ

The Angular RMS table in 7.2 only varies and measures φ. Variations in θ and φ simulta-
neously cause increased uncertainty due to greater path length in the detector. New trials
were run where both angles were incremented, and the RMS for each are tabulated below.
Both φ and θ are measured in degrees from normal incidence (θ is 90◦ from its definition in
coordinate system, for simplicity).

Figure 52: RMS Table for θ.

Figure 53: RMS Table for φ.
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Figure 54: Calculated angle histogram for 5 GeV muons at normal incidence and at θ, φ =
15◦.

Figure 55: Calculated angle histogram for 5 GeV muons at θ, φ = 30◦ and at θ, φ = 45◦.

Figure 56: Calculated angle histogram for 10 GeV muons at normal incidence and at θ, φ =
15◦.
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Figure 57: Calculated angle histogram for 10 GeV muons at θ, φ = 30◦ and at θ, φ = 45◦.

Figure 58: Calculated angle histogram for 20 GeV and 50 GeV muons at normal incidence.

Figure 59: Calculated angle histogram for 100 GeV and 150 GeV muons at normal incidence.
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For muons at normal incidence, the strong peaks at the mean are due to extremely
high precision for muons that pass through a single cell in all 4 planes (see Section 6.2 on
multiplicity). This removes the uncertainty introduced by the poisson distribution of dE

dx
,

the light-yield smearing, the fiber-hole, and histogram binning.
Causes of uncertainty are discussed in the next section.

A.2 Causes of Uncertainty

This section will investigate trends in angular RMS of the vernier detector, and iden-
tify their causes.

The uncertainty in φ is generally greater than in θ, which is antithetical to what the
symmetry of the simulation would suggest. The only difference is the ordering of the planes;
the planes in each bank that calculated θ are in front of those that calculate φ. Below is a
comparison of RMS when the plane order is switched.

Figure 60: Comparison of original RMS values with resultant RMS values from putting φ
planes in front.

The RMS values have effectively swapped. Conclusively, the angular RMS of the
second planes in each bank is greater than that of the first. We will investigate possible
causes, namely creation of secondaries and multiple scattering.

A.2.1 Creation of Secondaries

Because the refinement algorithm is imperfect, generation of secondaries is likely
a significant cause of error. This error would be more pronounced in the φ planes, as
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secondaries would be generated while the muon passed through the θ planes. Below are
RMS comparisons for when secondaries are removed.

Figure 61: Comparison of original RMS values for muons at normal incidence with resultant
RMS values from eliminating secondaries.

Figure 62: Comparison of original RMS values for 5 GeV muons with resultant RMS values
from eliminating secondaries.
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The disparity between φ and θ disappears for high-energy muons. It is increasingly
pronounced with angle for low-energy muons, however. This is likely due to scattering.

A.2.2 Multiple Coulomb Scattering

As discussed in 9.1, muons scatter as they pass through material according to Equation
5. Multiple scattering increases with path length, and therefore with angle (greater angles
have greater path length through the detectors) and decreases with energy. Scattering is also
more pronounced in the φ detectors, as the muons have already scattered in the θ detectors
when they reach the φ detectors.

Below are the resultant RMS values values when secondaries, scattering, and the
Poisson distribution of dE

dx
are removed (as a byproduct of the limitations of the simulation).

The only sources of error below are the fiber-hole, light yield smearing, and multiplicity for
higher values of θ (due to the construction of the coordinate system, ∆Z is dependent on
both φ and θ. When θ and φ are both at higher angles, muons travel steeply enough to
intersect more than 2 vernier cells in the θ planes).

Figure 63: Comparison of original RMS values for muons at normal incidence with resultant
RMS values values from stochastic processes.
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Figure 64: Comparison of original RMS values for 5 GeV muons with resultant RMS values
from eliminating stochastic processes.

The RMS is on the order of a microradian, so the detectors are near perfect. Multiple
scattering and secondary generation were thus the primary causes of uncertainty.
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B Appendix B

B.1 Use of dE
dx in Determining Muon Momentum

It is possible that the charge collected by the detector cells can be used to sort
muons by their incident momenta. If successful, this approach could yield clearer image
reconstruction by allowing us to use only those muons in an ideal energy range - eliminating
too-soft particles that experience significant scattering and too-hard particles that may not
be sensitive to variations in the material of the pyramid. Accordingly, we explored the
correlations between muon momentum and energy deposited in the rectangular scintillator
strips, and this is outlined below. Concrete was omitted in all of these runs; Eµ here refers
to the muon’s energy before it reached the first detector plane.

Figure 65 depicts example results from two metrics for measuring energy absorption
in the scintillator; on the left, muon hit multiplicity across all four detector planes, and on
the right, total energy deposited across all planes for the same run. As expected, the latter
is a Poisson distribution. It should be noted that the hit-multiplicity plot is shown on a log
scale; it appears that a total of 4 hits per event - and therefore 1 hit per plane - is most
common at this energy (Eµ = 40 GeV). This was discussed more thoroughly in section 6.1.
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Figure 65: Left: distribution of total number of strips hit in all four detector planes after a
run of 100,000 muons, with Eµ = 40 GeV. Right: distribution of total energy deposited in
all four planes after the same run.

The left side of Figure 66 shows the mean total energy deposited in all four detector
planes as a function of increasing incident muon energy; the right side of the figure shows
the mean difference between incident and final muon energies as a function of the same. The
latter plot demonstrates a noticeable increase in energy loss as Eµ increases. The former, on
the other hand, shows very little absolute change over the range of momenta tested.

The energy collected by the detectors, then, does not vary measurably with the energy
of the incident particle. Although the muons’ overall energy loss is strongly correlated with
their initial momenta, only a fraction of this lost energy is absorbed by the detectors. The
remainder is lost to the surroundings, primarily by means of gamma rays, which unlike
electrons do not strongly interact with the scintillator. It is worth noting that this effect is
partially due to the small size of the detectors in the simulation; a larger array of detectors,
like that filling an entire shipping container, would result in improved energy collection.
However, this would likely not be enough to account for the discrepancy in Figure 76. So,
before dE

dx
can be used to tag muons effectively, a way of increasing deposition in the detector

planes is needed.
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Figure 66: Left: the mean total energy deposited in all four scintillator planes as a function
of incident muon energy. Right: the mean total energy lost by the muon as a function
of incident energy. Particularly for muons at higher energies, there is a large discrepancy
between this total energy loss and the energy deposited in the detectors themselves.

B.1.1 Basic Detector Design vs. Additional Pb Layer

To improve the correlation between incident muon momentum and energy deposition
in the scintillators, we inserted a sheet of lead between detectors one and two (see Figure 67).
The width and height of this sheet matched that of the detector planes; its thickness varied
between 1 cm and 2 cm, while its exact placement ranged from 12 cm - 20 cm upstream
of detector two. This addition was intended to result in a greater number of showers from
secondary gamma rays and therefore an increased number of strips hit in the second detector.
However, it had the potential disadvantage of degrading the detectors’ position resolution.

Figure 67: The modified detector design includes a lead sheet of varying thickness between
the two detectors, and the placement of this sheet ranged from 12 cm - 20 cm upstream
of detector 2. The goal of this addition was to increase the number of secondaries striking
detector 2 without substantially degrading position resolution.
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As shown in Figure 68, adding lead did have the intended effect of increasing hit
multiplicity for higher-energy particles. The red data points represent the mean number of
strips hit in detector two only for the original detector design (no Pb); the green and blue
data represent the mean strips hit for configurations with 1 cm and 2 cm of lead, respectively.
The lead sheets for both cases were placed 12 cm away from the detector. The correlation
between Eµ and mean hit multiplicity is strongest for the 2-cm lead scenario.

However, these results also indicate that the modified detector design is likely unus-
able. The absolute increase in multiplicity over the range of energies tested is small (with a
mean of c. 2.2 strips at Eµ = 1 GeV and c. 3.2 strips at Eµ = 400 GeV), and this range is
itself larger than the probable real-life range of interest. Furthermore, the fraction of events
that resulted in a substantially greater multiplicity is quite small. The plot on the left side of
Figure 69 shows the percentage of events, out of a 10,000-event run, that yielded more than
four strips hit in detector two as a function of increasing Eµ; the plot on the right shows the
percentage of events that yielded more than ten hits. Here, the blue points correspond to
the 1-cm Pb configuration, while the red points correspond to 2 cm Pb. Even at the highest
energy simulated (Eµ = 400 GeV), the fraction of events satisfying the four-strip condition
does not exceed c. 12%, and the fraction satisfying the ten-strip condition does not exceed
c. 3.5%. In short, adding a lead sheet between the two detectors is not a practical means of
improving hit multiplicity for tagging incident Eµ. This design was not used in any of the
other studies described in this paper.

Figure 68: The mean number of strips hit in detector 2 as a function of incident muon energy,
for various lead configurations; 10,000 muons per run.
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Figure 69: Out of 10,000 muons per run, the percentage of events for which more than 4
strips (left) or 10 strips (right) were hit in detector 2. Adding Pb yielded a strong correlation
between incident muon energy and number of strips with charge, as hoped. However, this
configuration is likely unusable.
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