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MACHINE LEARNING IN HIGH-ENERGY PHYSICS

▸ ML has a long history of use in HEP.
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OVERVIEW

MACHINE LEARNING IN HIGH-ENERGY PHYSICS
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[Bhat, P. (History of Machine Learning for High Energy Physics, 2018)]

MULTIVARIATE 
METHODS

BOOSTED 
DECISION 

TREES
NEURAL 

NETWORKS

▸ This story is over-simplified. 

▸ Neural networks have been used in HEP since the late 
1980’s (track-finding, classification). 

▸ Multivariate methods and BDT’s are still in use.

▸ ML has a long history of use in HEP.

https://indi.to/7cgpr


OVERVIEW

▸ HEP is replete with examples and uses of neural networks. 

▸ One common task — our focus for today — is jet tagging. 

▸ Some approaches use out-of-the-box methods from 
other fields, e.g. image recognition. 

▸ Others use more physics-inspired architectures.

5



6



AN IMAGE-BASED APPROACH

[Komiske, P. T., Metodiev, E. M., 
Schwartz, M. D. (Deep learning 

in color, 2016)]
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https://arxiv.org/abs/1612.01551v3


AN IMAGE-BASED APPROACH

▸ Convolutional neural networks allow one to take 
advantage of symmetries in image-recognition.

✅

✅

✅

CONVOLUTIONAL 
NEURAL 

NETWORK

Translational Symmetry

Penguin classifier
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AN IMAGE-BASED APPROACH

▸ Convolutional neural networks allow one to take 
advantage of symmetries in image-recognition.

Rotational Symmetry
[Cohen, T., Welling, M. 

(Group Equivariant 
Convolutional Networks)]

CONVOLUTIONAL 
NEURAL 

NETWORK

GROUP

✅

✅

✅

Penguin classifier
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https://arxiv.org/abs/1602.07576


AN IMAGE-BASED APPROACH

BUT WAIT…
▸ What if the data does not exhibit these symmetries? 

▸ Consider “jet images” — projections of jet constituents onto . 

▸ Let’s fix  and , and transform the images in the  plane.

(η, ϕ)

E pT (η, ϕ)
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AN IMAGE-BASED APPROACH

BUT WAIT…
▸ What if the data does not exhibit these symmetries? 

▸ Consider “jet images” — projections of jet constituents onto . 

▸ Let’s fix  and , and transform the images in the  plane.

(η, ϕ)

E pT (η, ϕ)

(mass becomes imaginary)
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AN IMAGE-BASED APPROACH

BUT WAIT…
▸ What if the data does not exhibit these symmetries? 

▸ Consider “jet images” — projections of jet constituents onto . 

▸ Let’s fix  and , and transform the images in the  plane.
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OVERVIEW

▸ HEP is replete with examples and uses of neural networks. 

▸ One common task — our focus for today — is jet tagging. 

▸ Some approaches use out-of-the-box methods from 
other fields, e.g. image recognition. 

▸ Others use more physics-inspired architectures.
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▸ Particle/Energy Flow Networks[2] 

▸ Construct observables as some                                   . 

PHYSICS-INSPIRED NETWORKS

SOME NOTABLE EXAMPLES

▸ Lorentz Layer[1] 

▸ Network layer explicitly calculates Lorentz invariants ,  etc. 
from some input .

m2 pT
pμ
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▸ Lorentz Boost Networks[3] 

▸ Lorentz-boosts into momenta’s rest frames to extract features (to 
feed into a deep neural network).

[Butter, A., Kasieczka, G., Plehn, T., Russell, M. (LoLa — Lorentz Layer, 2018)]
[Thaler, J., Komiske, P. T., Metodiev, E. M. (Energy/Particle Flow Networks, 2018)]

[Erdmann, M., Geiser, E., Rath, Y., Rieger, M.  (Lorentz Boost Networks, 2018)]

https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1812.09722
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AT A GLANCE

LGN: THE MOTIVATING IDEA

▸ We wish to construct a network equivariant under action 
by members of the Lorentz group. 

▸ Similar in spirit to image identification, but built from the 
correct symmetry group for the problem:                 vs           .
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SO(1,3)+ SO(3)



LIE GROUP COVARIANCE/EQUIVARIANCE

Fout → ρout(g)Fout

Fout

F1

F2
F3

F1 → ρ1(g)F1 F2 → ρ2(g)F2 F3 → ρ3(g)F3

INPUTS

OUTPUTS
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[credit to Alex Bogatskiy]



ARCHITECTURE
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ARCHITECTURE

‣ Input:  particles’ 4-momenta . 

‣  activations  at each level live in representations of the Lorentz group. 

‣ The update rule involves pair interactions.

N pμ
i

N ℱi

ℱi ↦ W ⋅ ℱi ⊕ ℱ⊗2
i ⊕ ∑

j

f (p2
ij) ⋅ pij ⊗ ℱj

‣ Arbitrary traditional sub-networks can be applied to Lorentz invariants. 

‣
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ℱi ↦ W ⋅ ℱi ⊕ ℱ⊗2
i ⊕ ∑

j

f (p2
ij) ⋅ 𝒴(pij) ⊗ ℱj

self-interaction
learnable scalar 

function

pij ≡ pi − pj

zonal harmonics

pi ↦ W ⋅ pi ⊕ p⊗2
i ⊕ ∑

j

f (p2
ij) ⋅ pij ⊗ pjLevel 0:

‣ Output layer sums over  and projects onto invariants i‣                                                                                                  .(or other irrep).

permutation 
invariance



ARCHITECTURE 19

‣ Finite-dimensional representations of the Lorentz group are decomposable. 

‣ We decompose the activations via Clebsch-Gordan decompositions.

ℱi ↦ W ⋅ ℱi ⊕ CG [ℱ⊗2
i ] ⊕ ∑

j

f (p2
ij) ⋅ CG [pij ⊗ ℱj]CG [ ] CG [ ]

‣ Input:  particles’ 4-momenta . 

‣  activations  at each level live in representations of the Lorentz group. 

‣ The update rule involves pair interactions.

N pμ
i

N ℱi

Clebsch-Gordan decompositions



ARCHITECTURE 20

ℱi ↦ W ⋅ ℱi ⊕ CG [ℱ⊗2
i ] ⊕ ∑

j

f (p2
ij) ⋅ CG [pij ⊗ ℱj]CG [ ] CG [ ]

[Kondor, R., Trivedi, S. (On the Generalization of Equivariance and Convolution in  
Neural Networks to the Action of Compact Groups, 2018)]

Let  and  be completely reducible representations of :    
 

         Then linear equivariant map  can be parametrized by 

, with  acting on the irreps within . 

U V G
V = ⊕α R⊕τα

α , U = ⊕α R⊕τ′�α
α .

W : V → U

{Wα ∈ Mat(τ′ �α, τα)} Wα R⊕τα
α

‣ As a consequence of Schur’s lemma,  acts as a scalar multiplication on each 
irrep, and only linearly combines vectors of the same weight.

W

‣ We require  , our linear operation, to observe Lorentz equivariance.W

http://proceedings.mlr.press/v80/kondor18a.html


INPUT 
LAYER

ITERATED 
CG LAYER
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[credit to Alex Bogatskiy]



ITERATED 
CG LAYER
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[credit to Alex Bogatskiy]



ITERATED 
CG LAYER

23

[credit to Alex Bogatskiy]



OUTPUT 
LAYER
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[credit to Alex Bogatskiy]



OUTPUT 
LAYER
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[credit to Alex Bogatskiy]



LGN
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[credit to Alex Bogatskiy]



INVARIANCE TEST
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▸ We have set up LGN for top-tagging, a Lorentz-invariant task. 

▸ Let’s test network invariance. 

▸ Feed in some dummy  twice — once with some Lorentz 
boost applied — and look for differences in network output.

pμ

TESTING LORENTZ INVARIANCE



TOP-TAGGING
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TOP-TAGGING DATASET

▸  jets (anti-  ). 

▸ ,  . 

▸  hadronic top decays (signal). 

▸  leading jets from QCD dijet events (background). 

▸ Simulated with DELPHES + E-flow (fast detector sim). 

▸ For each jet, the  leading jet constituents’  stored in 
Cartesian coordinates, along with the truth top  for signal.

2M kT R = 0.8

pT( j) ∈ [550,650] GeV |η( j) | < 2

1M

1M

200 pμ

pμ
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[Kasieczka, G., Plehn, T., Thompson, J., Russel, M. (2019). Top Quark Tagging Reference Dataset (Version v0 
(2018_03_27)) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.2603256]

http://doi.org/10.5281/zenodo.2603256


Jet 2
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Jet 1
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TOP-TAGGING DATASET

PREPARING THE DATA
▸ LGN does not require any pre-processing of data. 

▸ We repackage the dataset from a pandas DataFrame 
saved in an HDF5 file, to a native HDF5 format via h5py.
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pandas HDFStore

DataFrame
idx E_0 PX_0 PY_0 PZ_0
0 … … … …
1 … … … …
2 … … … …
3 … … … …

Jet 0
E px py pz

0 … … … …
1 … … … …
2 … … … …
3 … … … …

…

. . .

numpy arrays

HDF5 file

CONVERSION 
SCRIPT
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Error 
band 
given by 

 
standard 
deviation

±1/2



average of 6 
independently-
trained 
instances

[Kasieczka, G.,  
Plehn, T.,  
et. al.  
(ML Landscape  
of top taggers,  
2019)]
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[Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K. (ResNeXt, 2016)]

[Moore, L., Nordström, K., Varma, S., Fairbairn, M. (Multi-body N-subjettiness, 2018)]

[Qu, H., Gouskos, L. (ParticleNet, 2019)]

[Komiske, P. T., Metodiev, E. M., Thaler, J. (Energy/Particle Flow Networks, 2018)]

[Butter, A., Kasieczka, G., Plehn, T., Russell, M. (LoLa, 2018)]

0.9290.964 424 ± 82LGN 4.5k
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[Komiske, P. T., Metodiev, E. M., Thaler, J. (Energy Flow Polynomials, 2017)]

[Macaluso, S., Cranmer, K (TreeNiN, 2019)]

[Pearkes, J., Fedorko, W., Lister, A., Gay, C. (TopoDNN, 2017)]

[The CMS Collaboration (P-CNN, 2017)]

[Erdmann, M., Geiser, E., Rath, Y., Rieger, M.  (LBN, 2018)]

[Dillon, B. M., Faroughy, D. A., Kamenik, J, F. (LDA, 2019)]

[Macaluso, S., Shih, D. (CNN, 2018)]

https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1807.04769
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1707.08966
https://arxiv.org/abs/1712.07124
https://github.com/SebastianMacaluso/TreeNiN
https://arxiv.org/abs/1704.02124
https://cds.cern.ch/record/2295725
https://arxiv.org/abs/1812.09722
https://arxiv.org/abs/1904.04200
https://arxiv.org/abs/1803.00107


JET CONSTITUENT STUDY

TRIMMING JET CONSTITUENTS
▸ All jets have notably fewer jet constituents than the 

maximum value of .200

33



JET CONSTITUENT STUDY

TRIMMING JET CONSTITUENTS
▸ By default, we use the 126 leading constituents of each jet 

as input.

34

We can alter this cut to test network dependence.



JET CONSTITUENT STUDY

TRIMMING JET CONSTITUENTS
▸ We find that performance is quite stable across choices of 

the cut in number of jet constituents used as input. 

▸ We can characterize performance by looking at the 
network accuracy, area under the ROC curve, loss (cross-
entropy), and background rejection at 30% signal 
efficiency as performance benchmarks.
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JET CONSTITUENT STUDY 36

Accuracy 
(Correct classification rate)

AUC 
(area under the ROC curve)

Loss 
(cross-entropy)

Background rejection 
(at 30% signal efficiency)



MOMENTUM DEPENDENCE STUDY

TRANSFER LEARNING
▸ We can also explore how well LGN can extrapolate results 

from one region of phase space to another. 

▸ Consider the reconstruction-level jet  distribution.pT

37



MOMENTUM DEPENDENCE STUDY

TRANSFER LEARNING: JET pT
▸ We divide the data into ten  reco jet  bins.10 GeV pT

38

▸ We discard events such that each bin has an even split of signal 
and background, and the same total number of training events.



MOMENTUM DEPENDENCE STUDY

TRANSFER LEARNING: JET pT
▸ LGN is relatively agnostic to the jet  bin used for training. 

▸ Performance is correlated with the jet  of the testing 
bin, but this correlation is consistent across training bins.

pT

pT
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TOP-TAGGING

A FEW IMPORTANT DETAILS…

▸ LGN is currently slow to train. 

▸ ~8 hours/epoch, on a single Nvidia GeForce RTX 2080. 

▸ Could be improved by parallelization across GPU’s, or a 
custom CUDA kernel. 

▸ We have not performed a full hyper-parameter scan. 

▸ Better-performing configurations may exist.

41



TOP-TAGGING

LGN

INTERPRETABILITY

▸ LGN is not the highest performer, but trades a small 
amount of performance for prospects of interpretability.

42

4.5k

Er
ro
r

(Work in Progress)



LGN

TOP-TAGGING

4.5k

43

INTERPRETABILITY

▸ LGN is not the highest performer, but trades a small 
amount of performance for prospects of interpretability.

Er
ro
r

(Work in Progress)

▸ Among theory-inspired 
networks, it has far fewer 
learnable parameters than 
any others except for EFP.



TOP-TAGGING 44

INTERPRETABILITY

▸ Furthermore, these 
parameters correspond with 
physically-meaningful 
quantities — Lorentz-
equivariant expressions 
formed by tensor products 
of momenta.

Er
ro
r

(Work in Progress)



TOP-TAGGING 45

CONCLUSION

▸ To the best of our knowledge, LGN is the first example of a 
neural network in particle physics with the symmetries of 
the Lorentz group fully embedded in the architecture. 

▸ This architecture can be naturally extended for data 
containing additional particle information, such as charge. 

▸ Furthermore, LGN can in principle be used for Lorentz-
covariant tasks, such as four-momentum regression.



CONCLUSION

ONGOING AND NEAR-FUTURE WORK

▸ Studying irrep mixing weights. 

▸ Are there patterns among better-performing networks? 

▸ Correlations with training bin jet ? 

▸ Covariant top quark four-momentum measurement. 

▸ Can we predict momenta in ?*

pT

t → W(qq̄)b

46

* requires a different dataset



REFERENCES

REFERENCES

▸ Past talks: 

▸ ML4Jets 2020: https://indi.to/xmXL8 

▸ ICML 2020: https://icml.cc/virtual/2020/poster/5843 

▸ Papers:  

▸ ICML 2020: https://arxiv.org/abs/2006.04780 

▸ A more HEP-oriented companion paper coming soon… 

▸ GitHub: https://github.com/fizisist/LorentzGroupNetwork
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4) COMPARISON TOP TAGGERS 
5) SCHUR’S LEMMA 
6) CLEBSCH-GORDAN COEFFICIENTS
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JET pT



DATASET KINEMATIC DISTRIBUTIONS 52

JET  & η ϕ



DATASET KINEMATIC DISTRIBUTIONS 53

JET NUMBER OF CONSTITUENTS & m



DATASET KINEMATIC DISTRIBUTIONS 54

JET NUMBER OF CONSTITUENTS VS. m



DATASET KINEMATIC DISTRIBUTIONS 55

JET NUMBER OF CONSTITUENTS VS. pT



DATASET KINEMATIC DISTRIBUTIONS 56

JET NUMBER OF CONSTITUENTS VS. pT



DATASET EVENT DISPLAYS

SAMPLE EVENT DISPLAYS (SIGNAL & BACKGROUND)

57



NETWORK TRAINING

TRAINING ON THE FULL DATASET

58

Note: Data from earlier 
epochs missing for run2.



NETWORK TRAINING

TRAINING ON pT ∈ [550,560] GeV
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NETWORK TRAINING

TRAINING ON pT ∈ [640,650] GeV
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TOP TAGGERS

CNN
▸ Uses jet images (in ). 

▸ Images are pre-processed by centering on the jet’s  -
weighted centroid, rotating so that the 2nd highest-
intensity cluster is along the vertical axis. 

▸ Takes advantage of multiple channels 

(η, ϕ)

pT

(pneutral
T , ptrack

T , Ntrack, Nmuon) .

61

[Macaluso, S., Shih, D. (Pulling Out All the Tops with Computer Vision and Deep Learning, 2018)]

⤶

https://arxiv.org/abs/1803.00107


TOP TAGGERS

RESNEXT
▸ Uses jet images (in ). 

▸ Images are pre-processed by centering on the jet’s  -
weighted centroid. 

▸ An “out-of-the-box” application of an image-identification.

(η, ϕ)

pT

62

[Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K. (ResNeXt, 2016)]

⤶

https://arxiv.org/abs/1611.05431


TOP TAGGERS

TOPODNN
▸ Deep neural network using jet constituents’ 4-momenta 

components  as inputs. 

▸ Jets are preprocessed by translation in  to center the 
leading subjet. Then the momenta are transformed:

(pT, η, ϕ)
(η, ϕ)

63

p′ �y,n = py,n cos θ − pz,n sin θ , p′�z,n = py,n sin θ − pz,n cos θ , with θ = arctan (
py,2

pz,2 ) +
π
2

.

[Pearkes, J., Fedorko, W., Lister, A., Gay, C.  
(Jet Constituents for Deep Neural Network Based Top Quark Tagging, 2017)]

⤶

https://arxiv.org/abs/1704.02124
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TOP TAGGERS

MULTI-BODY N-SUBJETINESS
▸ Dense neural network. 

▸ Uses a family of -subjetiness variables  as input.[*]N {τ(α)
i }

64

[Moore, L., Nordström, K., Varma, S., Fairbairn, M. (Multi-body N-subjettiness, 2018)]

τ(β)
N =

1
pT,J ∑

i∈J

pT,i min {Rβ
1i, Rβ

2i…Rβ
Ni}

▸ No (unphysical) pre-processing of data necessary. 

▸  may need to be calculated, but these are well-
understood high-level variables.
{τ(α)

i }

* [Thaler, J., Van Tilburg, K. (Identifying Boosted Objects with N-subjettiness, 2010)]

⤶

https://github.com/SebastianMacaluso/TreeNiN
https://arxiv.org/abs/1807.04769
https://arxiv.org/abs/1011.2268


TOP TAGGERS

TREE NIN
▸ Uses a “tree neural network” structure.[*] 

▸ Jets are restructured as binary trees, with each node 
carried a set of features . 

▸ The “Network in Network” structure allows for fully-
connected layers in each binary tree node.

( | ⃗p | , η, ϕ, E, Efrac, pT, θ)

65

[Macaluso, S., Cranmer, K (Tree Network in Network (TreeNiN) for Jet Physics, 2019)]

* [Roy, D., Priyadarshini, P., Roy K.  
(Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning, 2018)]

⤶

https://github.com/SebastianMacaluso/TreeNiN
https://arxiv.org/abs/1802.05800


TOP TAGGERS

P-CNN
▸ One-dimensional CNN, based on a DNN used by CMS.[*] 

Similar to ResNet, but uses 1D convolutions. 

▸ Jets are input as a  -ordered list of the  leading 
constituents. 

▸ For each jet, P-CNN computes input features 
, with angular 

distances computed with respect to the jet axis.

pT 100

{log pi
T, log Ei, log(pi

T /pjet
t ), Δηi, Δϕi, ΔRi}

66

[Kasieczka, G., Plehn, T., et. al. (ML Landscape of top taggers, 2019)]

*[The CMS Collaboration  
(Boosted jet identification using particle candidates and deep neural networks, 2017)]

⤶

https://arxiv.org/abs/1902.09914
https://cds.cern.ch/record/2295725


TOP TAGGERS

PARTICLENET

67

[Qu, H., Gouskos, L. (ParticleNet, 2019)]

EdgeConv ParticleNet

⤶

▸ Deep graph CNN. 

▸ Jets are represented as 
unordered sets of particles. 

▸ A graph is constructed for each 
jet, with particles as vertices. 
Edges connect each constituent 
to its  nearest neighbors in 

. 

▸ Edge convolutions[*] are applied 
to the graph, with graph 
distances updated after          
each convolution.

k
(η, ϕ)

*[Wang, Y., Sun, Y., Liu, Z., Sarma, S., Bronstein, M. M., Solomon, J . M. 
(Dynamic Graph CNN for Learning on Point Clouds, 2018)]

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1801.07829


TOP TAGGERS

LORENTZ BOOST NETWORK
▸ Jet constituents are input as four-momenta. 

▸ The jets are pre-processed by anti-  reclustering, with
, to provide a consistent constituent ordering. 

▸ An intermediate layer treats half the inputs as constituents 
and the other half as rest frames, into which the 
constituents are boosted. 

▸ An output layer computes a set of features from the 
boosted constituents, , as well as cosine of 
the angles between all boosted constituents.

kT
ΔR = 0.2

(E, m, pT, ϕ, η)

68

[Erdmann, M., Geiser, E., Rath, Y., Rieger, M.  (Lorentz Boost Networks, 2018)]

⤶

https://arxiv.org/abs/1812.09722


TOP TAGGERS

LORENTZ LAYER
▸ Jet constituents are input as four-momenta. 

▸ A combination layer (CoLa) linearly combines the momenta: 
. 

▸ The Lorentz Layer (LoLa) calculates a set of Lorentz 
invariants: 

.

kμ,i → k̃μ,j = kμ,iCij

kj → ̂kj = {m2(k̃j), pT(k̃j), w(E)
jm E(k̃m), w(m2)

jm m2(k̃m), w(d)
jm d2

jm}

69

[Butter, A., Kasieczka, G., Plehn, T., Russell, M. (LoLa — Lorentz Layer, 2018)]

⤶

https://arxiv.org/abs/1707.08966


TOP TAGGERS

LATENT DIRICHLET ALLOCATION
▸ Jets are input as a series of subjets, which are produced by Cambrige-Aachen 

clustering, followed by sequential de-clustering . 

▸ For each subjet , inputs are given as the observables 

. 

▸ The likelihood of generating jet   is modeled by 

. 

▸ Model does not account for . 

▸ A neural network is trained to invert the above expression to find .

j0 → j1 j2

j0

{mj0,
mj1

mj0
,

mj2

mj1
,

min(p2
T,1, p2

T,2)
m2

j0
ΔR2

1,2}
j = {o1, o2, …on}

p( j |α, β) = ∫ω
p(ω |α)∏

o∈j (∑
t

p(t |ω)p(o | t, β)) dω

p(oi |oi−1)

(β, ω)

70

[Dillon, B. M., Faroughy, D. A., Kamenik, J, F. (Uncovering latent jet substructure, 2019)]

theme 
proportion

theme hyper- 
parameter

⤶

https://arxiv.org/abs/1904.04200


TOP TAGGERS

ENERGY FLOW POLYNOMIALS
▸ For a jet with  constituents and a multigraph  with  

vertices and edges , the corresponding EFP is

 , with  . 

▸ EFP’s form a complete linear basis for jet substructure, so that 
any IRC-safe observable can be computed as  . 

▸ In practice, one truncates  via a max number of edges. 

▸ EFP’s can be used in linear regression or as DNN inputs.

M G N
(k, l) ∈ G

EFPG =
M

∑
i1=1

…
M

∑
iN=1

zi1…ziN ∏
(k,l)∈G

θikil zi ≡
Ei

∑M
j=1 Ej

S ≃ ∑
G∈𝒢

sG EFPG

𝒢

71

[Komiske, P. T., Metodiev, E. M., Thaler, J.  
(Energy flow polynomials: A complete linear basis for jet substructure, 2017)]

⤶

https://arxiv.org/abs/1712.07124


TOP TAGGERS

ENERGY/PARTICLE FLOW NETWORKS
▸ IRC-safe observables can be approximated as 

, where: 

▸  for EFN,  for PFN,   . 

▸  is a per-particle mapping,  is a 
continuous function. 

▸ These can be parametrized as neural network layers for 
complicated observables.

F (
M

∑
i=1

(zi)Φ( ̂pi))
zi = {Ei, pT,i} zi = 1 ̂pi =

⃗p
| ⃗p |

Φ : ℝd → ℝl F : ℝl → ℝ

72

⤶

[Komiske, P. T., Metodiev, E. M., Thaler, J.  
(Energy Flow Networks: Deep Sets for Particle Jets, 2018)]

https://arxiv.org/abs/1810.05165


SCHUR’S LEMMA 73

[Kondor, R., Trivedi, S. (On the Generalization of Equivariance and Convolution in  
Neural Networks to the Action of Compact Groups, 2018)]

One formulation (from Kondor & Trivedi): 

Let   and    be two irreducible representations of a 
compact group .  

Let   be an equivariant linear mapping for these reps, i.e.  
.   

Then, unless  is the zero map,  and  are equivalent representations.

{ρ(g) : U → U}g∈G {ρ′�(g) : V → V}g∈G
G

ϕ : U → V
ϕ (ρ(g)(u)) = ρ′ �(g)(ϕ(u))∀ u ∈ U

ϕ ρ ρ′�

http://proceedings.mlr.press/v80/kondor18a.html


CLEBSCH-GORDAN COEFFICIENTS

l1, m1⟩ ⊗ l2, m2⟩ = ∑
l,m

Bl,m
l1,m1;l2,m2

l, m⟩B−1 : Rl1 ⊗ Rl2 →
l1+l2

⨁
l=|l1−l2|

RlSO(3), SU(2) :

(2l1 + 1)(2l2 + 1) × (2l + 1)

H−1 : T(k1,n1) ⊗ T(k2,n2) →
k1+k2

⨁
k=|k1−k2|

n1+n2

⨁
n=|n1−n2|

T(k,n)

SO(1,3)+, SL(2,ℂ) : T(k,n) ≃
(k+n)/2

⨁
l=|k−n|/2

Rl

H(k1,n1),l1,m1;(k2,n2),l2,m2
(k,n),l,m = ∑

m′ �1,m′ �2

B
k
2 ,m′�1+m′�2; n

2 ,m−m′ �1−m′�2
l,m B

k1
2 ,m′ �1;

k2
2 ,m′�2

k
2 ,m′�1+m′ �2

B
n1
2 ,m1−m′ �1;

n2
2 ,m2−m′�2

n
2 ,m−m′ �1−m′�2

B
k1
2 ,m′�1;

n1
2 ,m1−m′�1

l1,m1
B

k2
2 ,m′�2;

n2
2 ,m2−m′�2

l2,m2

(k1 + 1)(n1 + 1)(k2 + 1)(n2 + 1) × (k + 1)(n + 1)

D(k,n)(α, β, γ) = (H(k,0),(0,n)
(k,n) )

T
⋅ (Dk/2(α, β, γ) ⊗ Dn/2(−α, β, − γ)) ⋅ (H(k,0),(0,n)

(k,n) ) .
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[credit to Alex Bogatskiy]


