Experimental Aspects of Heavy Flavor Physics at EIC: Gluon Dynamics and Hadronization

<u>Xin Dong</u> (LBNL) Stephen Sekula (SMU) Ivan Vitev (LANL)

arXiv: 1212.1701

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

Snowmass EF 06/07 Meeting 10/20, 2020

Heavy Flavor to Probe Gluon Dynamics at EIC

- EIC is a machine for precision investigation of gluon dynamics in nucleon/nucleus
- Heavy flavor in NC channel sensitive probe to initial gluons

- Inclusive heavy flavor measurement to constrain gluon nPDF, particularly at high x
- Heavy flavor *double spin asymmetry* for gluon helicity $\Delta g/g$
- $D\overline{D}$ pair reconstruction to access gluon TMD PDFs
- Heavy flavor hadron (**D**, Λ_c etc.) for *hadronization* and CNM effect

Inclusive Charm -> Gluon nPDF at High x

10-2

х

10-1

1

0

10-4

10⁻³

E. Chudakov et al, 1610.08536

More details see S. Sekula's presentation

Gluon Helicity $\Delta g/g$

Understanding proton spin is one of the EIC science goals

HF - better sensitivity to the gluon dynamics

Inclusive g₁ measurement - EIC white paper

- complementary to the inclusive measurement
- direct access to $\Delta g/g$ LO $A_{LL} \propto \hat{a}_{LL} \times \Delta g/g$

COMPASS data from open charm

$D\overline{D}$ Pair - Probe Gluon TMDs

Charm hadron pair in transverse polarized exp.

- gluon Sivers functions

Charm hadron pair in unpolarized exp.

- linearly polarized Boer-Mulders function

$$A_{UT}(\phi_{kS}, k_T) = \frac{d\sigma^{\uparrow}(\phi_{kS}, k_T) - d\sigma^{\downarrow}(\phi_{kS}, k_T)}{d\sigma^{\uparrow}(\phi_{kS}, k_T) + d\sigma^{\downarrow}(\phi_{kS}, k_T)}$$

Hadronization and CNM

Cold Nuclear Matter Effect on

Charm hadrochemistry

0.9

 $-2 < \eta < 0$

 $0 < \eta < 2$

 $2 < \eta < 4$

0.7

0.8

Kinematic Distributions

Tracking Detector Concept

Detector requirements:

- hermetic coverage
- thin detector material
- fine pitch size

Ultra-thin fine-pitch MAPS: 10x10 um pitch, ~0.05% X₀ vertexing layers

- requirements on PID, calorimeters etc under discussion

Performance

Ongoing efforts in Physics and Detector Working Groups towards EIC Yellow Report

Summary

- Inclusive HF -> gluon (n)PDF
- **HF A**_{LL} -> gluon helicity
- $D\overline{D}$ pair -> gluon TMDs
- **D**, Λ_c -> hadronization and CNM

- Heavy quarks offer a unique role in studying gluon dynamics in QCD at EIC.
- EIC is a precision QCD machine!
 - Ongoing community efforts aim for optimization of (tracking) detector design.

Backup

EMC <-> Short-Range Correlation

Kinematic Distributions

<u>e + p 18 x 275 PYTHIA 6.4</u>

Fast Simulation w/ Default Detector Parameters

• Charm and bottom reconstruction using fast simulation smearing of PYTHIA 6.4 output

- Momentum and pointing resolutions taken from detector matrix page as baseline
 - central transverse pointing resolution extends to $|\eta| < 3$

Agreed Requirements within Physics Working Group

Eta Bin	Pointing Resolution
[-2.5, -1.0]	$\sigma_{XY} \sim 30/p_T \oplus 20 \mu m$
[-1.0, 1.0]	$\sigma_{XY} \sim \sigma_Z \sim 20/p_T \oplus 5\mu m$
[1.0, 2.5]	$\sigma_{XY} \sim 30/p_T \oplus 20 \mu m$
[2.5, 3.0]	$\sigma_{XY} \sim 30/p_T \oplus 40 \mu m$
[3.0, 3.5]	$\sigma_{XY} \sim 30/p_T \oplus 60 \mu m$

Full Simulation w/ New Beam Pipe

Event Multiplicity Distributions

<u>e + p 18 x 275 PYTHIA 6.4</u>

Snowmass EF 06/07 Meeting 10/20, 2020