J-PARC Neutrino Beam Upgrade Plans and Possibilities

2020/12/2, NF09 workshop

K.Sakashita(KEK/J-PARC) on behalf of the J-PARC neutrino facility group

Accelerator-based long-baseline neutrino oscillation experiments at Japan

Main physics target is CP violation in neutrino oscillation

Recently, T2K results showed a hint of large CP violation

DOI:10.1038/s41586-020-2177-0

- Extension of data taking (T2K-II) was approved
- Upgrade of beam and near detector is in progress

Hyper-Kamiokande

- Construction started
- will begin operation in 2027

Sensitivity to CPV

Hyper-Kamiokande

 $\sim 3\sigma$ sensitivity for δ_{CP} =- $\pi/2$ case

 $\sin\delta_{CP}=0$ can be excluded in 2-3years if $\delta_{CP}=-\pi/2$

High intense neutrino beam and reduction of syst. error are essential

High intense neutrino beam for T2K and HK

- v energy is narrow with off-axis method
 L = 295km → oscillation peak at 0.6GeV
- ❖ small v_e contamination (~1%)
- * v / \overline{v} can be switched by flipping horn polarity

Key points:

~Mega-Watt class proton driver

Neutrino beamline which can handle the high intense beam

J-PARC accelerators at Tokai

How can we increase beam power?

Power ∝ 30GeV x # of protons x 1/T_{rep.}

J-PARC MR Power Upgrade Plan

J-PARC neutrino beamline

Neutrino beamline operation

- Accumulated 3.64×10^{21} Protons On Target (2010 Jan. ~ 2020 Feb.)
 - Corresponds to ~46% of original proposal
- Replacement of radio-activated equipments(*) were successfully performed several times
- Stable operation at 515kW has been achieved with no major issues

Beam stability

- · Beam direction is stable within much better than 1 mrad
 - 1mrad corresponds to a 2% shift of peak ν energy at SK

Need to keep this stability even at 1.3MW beam

How can we realize 1.3MW operation?

Modest improvement is necessary for some beamline components

+ Accepting high repetition rate (~1Hz) beam

Electromagnetic horn

- Power supply system will be slightly modified for 1Hz operation
- ❖ 250kA → 320kA operation
- Improving cooling capability of horn#2 stripline for the heat generated by beam
- Collaboration with Colorad U. and FNAL

Currently, the He gas cooling method limits acceptable power to 750kW

Developed a new water cooled stripline which can accept up to 2.1MW → ready to install

Target

- Design of new target for 1.3MW
- Collaboration with RAL group on the target as well as the beam window

- ❖ Designed for 3.3×10^{14} p.p.p. → should be OK for 3.2×10^{14} p.p.p. (1.3MW)
 - no damage on target observed after 1.3MW x
 6month equivalent POT exposure
- Need to improve the He gas cooling capability for the heat generated by beam (x1.7 : 24kW@750kW → 41kW@1.3MW)
- increase He mass flow rate to accept this

- Developing improved He cooling system for high flow rate and high pressure tolerance
- Collaboration with FNAL for He circulation system for target cooling

Radio-active water disposal

- Cooling water activated by ³H (Tritium) should be diluted and drained
- Tritium contamination increases as increasing beam exposures but the capability of water disposal is limited by size of the dilution tank
- ❖ Increase the size of the dilution tank to increase the capability of water disposal : $84m^3 \rightarrow 484m^3$

Horn cooling water

Under construction (~2022)

~25GBq HTO produced per 1x10²⁰POT In Horn/TS He Vessel/Decay Volume Cooling Water

R&D to understand Tritium production and knowledge sharing on Tritium treatment are in progress among US-Japan collaboration

Proton beam monitor

- Important to properly tune the beam position, direction and size at the target
- Segmented Secondary Emission Monitors (SSEM) are utilized in the neutrino beamline
- Beam loss becomes an issue for MW beam power

New type monitors are developed

(1) Wire-type Secondary-emission profile monitor

US-Japan collaboration

Measured Profile @ ~460kW State 15000 WE 15000 -40 -30 -20 -10 0 10 20 30 40 X position (mm) 2

φ25μm twinned Ti wire

→ beam loss was 1/10 compared to Ti-foil type profile monitor

(2) Beam induced fluorescence monitor

Beam induced fluorescence profile monitor is under development as a nondestructive beam profile monitor toward continuous monitoring w/o any beam loss

Successfully Observed beam profile w/ Prototype monitor

Muon monitor upgrade

- Important to properly monitor spill-byspill muon beam direction and profile
- ❖ Signal degradation was observed (e.g. ~1%/5E20 POT for Si)
- ♦ A new detector w/ radiation tolerance is under development → EMT

EMT R&D

- Initial study of linearity, stability was checked at J-PARC → it looks promising
- Test beam experiments to evaluate radiation tolerance were performed
- Development with domestic
 Universities and US-Japan
 collaboration

EMT

Summary

- J-PARC accelerator and neutrino beamline upgrade program is essential for T2K and Hyper-K experiments
- Upgrade program for high power is ongoing under strong international and domestic collaboration

J-PARC accelerator and neutrino beamline is ready for > I MW before Hyper-K start