Flux Determination at (Future) Near Detectors (at the Conventional Neutrino Beam Experiments)

Chang Kee Jung, Stony Brook University Snowmass21 NF09 Worksbop, via video December 2, 2020

Ways to Determine Neutrino Beam Flux w/ ND

- Canonical "Inclusive" ($\Phi(E)$, $\sigma(E)$) constraint method
 - Fit simultaneously a variety of data samples including all correlations w/ external inputs (priors)
 - ¬ Full utilization of data/statistics
 - ¬ Unavoidable model dependences → relatively large systematic uncertainties
 - ¬T2K/T2K-II, HyperK, DUNE

Ways to Determine Neutrino Beam Flux w/ ND

- "Quasi-exclusive" determination methods
 - \neg Attempts to decouple ($\Phi(E), \sigma(E)$) in observables
 - ¬ Neutrino electron elastic scattering
 - The known, pure electro-weak, cross section
 - But small cross section → relatively small sample size
 - Could be a powerful tool for DUNE (higher beam energy and larger ND target size)
 - \neg Low- ν (energy transfer to the target nucleus/nuclear recoil energy) flux method
 - Approximately constant cross section for events with ν < cutoff ν_0 ($\ll E_{\nu}$)
 - Extract neutrino flux shape from the shape of the neutrino CC event spectrum for $v < v_0$
 - Relatively limited sample size
 - Could be a useful tool for DUNE
 - ¬ "PRISM" (off-axis flux sampling for linear combination) method
 - Break degeneracies in $\Phi(E)$, $\sigma(E)$ with many off-axis measurements (different flux shapes)
 - Minimize neutrino-nuclear interaction model dependence and possible biases
 - DUNE-PRISM (DUNE), nu-PRISM (HyperK)

Additional Tools for Flux Determinations

- ¬ Improve constraints with both canonical and low-v methods
- Improve anti-nu flux determination
- SuperFGD/T2K upgrade and 3DST/DUNE ND SAND
- STV (Single Transverse Variables)
 - \neg Small δp_t cut allows selection of clean sample of neutrino interactions on H and also on C w/ relatively little nuclear effects \rightarrow stronger constraints on neutrino flux

Chang Kee Jung

A. Himmel, Neutrino 2020

T2K-I/T2K-II Projected Sensitivities for $\sin \delta_{cp}$

T2K-II Main Goal: search for CPV in neutrinos

~4 months/year data taking runs until the beginning of the HyperK data taking \rightarrow Need to reduce systemtic uncertainties \rightarrow ND280 upgrade (summer 2022)

Snowmass21 NF09, Dec. 2, 2020

Chang Kee Jung

Stony Brook University

T2K Near Detector Complex

Off-Axis Detectors

- 0.2 T magnet
- v flux/spectrum
- cross-sections

On-Axis Detector (INGRIE) - v beam direction, profile

2.5° off-axis v_{μ} be am

on-axis v_µbeam

Snowmass21 NF09, Dec. 2, 2020

Neutrino/Antineutrino Flux Predictions and Uncertainties

Flux and X-sec Constraints with ND280

Uncertainty on the Number of Events in each SK Sample

Error source (units: %)	$\begin{vmatrix} 1 \mathrm{R} \mu \\ \mathrm{FHC} & \mathrm{RHC} \end{vmatrix}$		FHC	RHC	$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC				
Flux	5.1	4.7	4.8	4.7	4.9	2.7	Pre-ND			
Cross-section (all)	10.1	10.1	11.9	10.3	12.0	10.4	and a second			
SK+SI+PN	2.9	2.5	3.3	4.4	13.4	1.4				
Total	11.1	11.3	13.0	12.1	18.7	10.7				
	1	D.,,			1D.0					
Error source (units: $\%$)	FHC	$\frac{\pi \mu}{\text{RHC}}$	$\ $ FHC	RHC	FHC CC1 π^+	FHC/RHC				
Flux	2.9	2.8	2.8	2.9	2.8	1.4				
Xsec (ND constr)	$\parallel 3.1$	3.0	$\ $ 3.2	3.1	4.2	1.5	Post-IND			
Flux+Xsec (ND constr)	2.1	2.3	$\ 2.0$	2.3	4.1	1.7	the second second			
Xsec (ND unconstrained)	0.6	2.5	3.0	3.6	2.8	3.8				
SK+SI+PN	$\parallel 2.1$	1.9	$\ $ 3.1	3.9	13.4	1.2				
Total	∥ 3.0	4.0	$\parallel 4.7$	5.9	14.3	4.3				
most relevant for extracting CPV effect										

Snowmass21 NF09, Dec. 2, 2020

Chang Kee Jung

Fit

Fit

ND280 Upgrade

- 6 ToF modules all around the new tracker

→ Reduces background due to confusion of muon direction

- Detectors are being constructed, and will be installed by summer 2022 for beam data taking in fall 2022

- Preliminary studies show a factor 2-3 improvements in the precision of measuring the cross-section uncertainties (and similarly for flux), for the same statistics of ND280

e.g.) better neutrino energy reconstruction using proton information in QE events (TDR addendum)

DUNE ND Current Concept Configuration (A robust system of complementary subsystems)

Scintillator based Spectrometer (SAND)

- 3DST+low den. tracker
- KLOE ECAL & magnet
- On-axis beam monitor
- High stat on C target

→ event-by-event neutron detection and energy measurement

Multi-Purpose Detector

- HPgTPC (high res. & low E threshold on Ar target)

- ECAL (high performance)
- B-field (spectrometry of the exiting muons from LArTPC)

LArTPC as FD

- Modular design w/ pixel readout
- High Stat on Ar target

- No B-field

Snowmass21 NF09, Dec. 2, 2020

DUNE Flux Constraint by Neutrino-electron Elastic Scattering in ND-LAr

~5000 LAr ND events/year

¬ Reduced stat. under DUNE-PRISM

$$E_{\nu} = \frac{E_e}{1 - \frac{E_e(1 - \cos\theta)}{m}}$$

- Strong normalization contraint due to known XSEC $E_e(1-\cos\theta)$

- Weak shape constraint due to detector smearing and beam divergence

- The prefit uncertainty may need to be updated

Phys.Rev.D 101 (2020) 3, 032002

Snowmass21 NF09, Dec. 2, 2020

DUNE-PRISM

- \neg Sample difference E_v
- Produce FD oscillated spectra (or any arbitrary spectra) by a linear combination of the off-axis samples
 - Break cross-section model degeneracies
 - ¬ Reduce overall dependence on the cross-section model and biases

SAND (System of on-Axis Neutrino Detector)

Snowmass21 NF09, Dec. 2, 2020

Fundamentals of DUNE 3DST & T2K SuperFGD

- Plastic scintillator + WLS fiber + MPPC
 - ¬ Fully active target
 - ¬ 1x1x1 cm³ scintillator cubes assembled in rows and columns
 - Provide 3D projected views w/ fine segmentation
 - \neg 4 π acceptance w/ low momentum threshold for protons (~300 MeV)
 - ¬ Momentum-by-range: ~ 2-3% for stopping muons
- High light yield
 - \neg ~50 p.e. for MIP
- Good timing resolution
 - \neg ~0.95 ns for 1 channel, ~0.5 ns for 1 cube
 - ¬ Event-by-event neutron KE measurement using TOF

Successful large scale assembly at INR, Russia

Beam Monitoring w/ SAND (Reference Design)

- A good sensitivity to relatively small spectrum variations in one week time scale, afforded by:
 - ¬ High statistics resulting from the large mass of 3DST+ECAL
 - ¬ The excellent energy/momentum resolutions of combined 3DST, ECAL and TPC system
- The sensitivities are compared with those from four 7-ton "INGRID-like" modules placed at 0, 1, 2, 3 meters from the on-axis position

	Volume	Weight [tonne]	Parameter description			Significance, $\sqrt{\chi^2}$		
Coil incl. Cryostat		42	Beam parameter	Nominal	Changed	Rate-only monitor	SAND	
	-	42	proton target density	1.71 g/cm^3	1.74 g/cm^3	0.02	5.6	
Yoke ²	65.2	510	proton beam width	2.7 mm	2.8 mm	0.02	3.6	
KLOE Existing EmC	21.5	108	proton beam offset x	N/A	+0.45 mm	0.09	4.3	
Aux. Steel Structures	20	156	proton beam theta	N/A	0.07 mrad	0.03	0.5	
New Outside End EmCs	0.4	2	proton beam $\theta\phi$	N/A	0.07 mrad $ heta$ and 1.5707 ϕ	0.00	1.0	
New Inside End EMCs	1.2	6	horn current	293 kA	296 kA	0.2	11.9	
Low-Density Detector ⁴	-	3	water layer thickness	1 mm	1.5 mm	0.5	4.2	
3DST Structure	_	15	decay pipe radius	2 m	2.1 m	0.5	7.0	
		10	horn 1 along x	N/A	0.5 mm	0.5	4.6	
Racks	-	20	horn 1 along y	N/A	0.5 mm	0.1	3.6	
Prism Rollers		10	horn 2 along x	N/A	0.5 mm	0.02	0.9	
KLOE-3DST TOTAL WEIGHT		~900	horn 2 along y	N/A	0.5 mm	0.00	0.8	

Snowmass21 NF09, Dec. 2, 2020

Event-by-event Neutron KE Measurement in DUNE 3DST utilizing TOF

3DST best suited for neutron KE measurement

- Fine granularity and sub-nano sec timing resolution (~.5 ns for 3 fibers)
- Large fully active mass for neutron interactions (low-A nuclei & scintillating)

 \neg Low energy threshold (1 p.e. ~60 keV)

Snowmass21 NF09, Dec. 2, 2020

Importance of Event-by-event Neutron KE Measurement

- Event-by-event neutron energy measurement is one of the final, if not the final, frontiers in particle physics experiment
 - ¬ Allows full event reconstruction
 - Detailed studies of neutrino interaction models
 - Measurement of antinu flux, especially using antinu–hydrogen interactions which has limited model dependence (PRD 101, 092003 (2020) → next slide)

¬ Very good neutron detection efficiency and very low out-FV background

Recent paper from Minerva (PRD 100, 052002 (2019))

Neutron KE Measurement and Antineutrino Flux Measurement w/ T2K SuperFGD

LANSCE Neutron Beam Test Facility

Snowmass21 NF09, Dec. 2, 2020

Chang Kee Jung

Stony Brook University

Neutron Beam Test Data

Flux Determinations in HyperK

Input by M. Hartz

Snowmass21 NF09, Dec. 2, 2020

Conclusion

- Needless to say, discovery of CPV in neutrino oscillations will require stringent control of systematic uncertainties, especially if dcp is away from -π/2
 - ¬ It would be prudent to aim to reduce neutrino flux related uncertainties to ~1% level
 - We will need continuing improvement in all aspects of flux determination by ND
 - External inputs (flux predictions and cross-section modeling, ...)
 - Detectors (high resolution, full acceptance, ...)
 - New methods (neutrino-electron scattering, low-v, PRISM, ...)
 - New tools (neutron, STV, ...)

→ event-by-event determination of neutron KE could be a powerful new tool!

