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Ways to Determine Neutrino Beam Flux w/ ND

= Canonical “Inclusive” (&(E), o(E)) constraint method

= Fit simultaneously a variety of data samples including all correlations w/
external inputs (priors)

— Full utilization of data/statistics

= Unavoidable model dependences - relatively large systematic
uncertainties T2K Preliminary
[ [

= T2K/T2K-II, HyperK, DUNE

X--Sec
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Ways to Determine Neutrino Beam Flux w/ ND

= “Quasi-exclusive” determination methods
= Attempts to decouple (@(E), o(E)) in observables
= Neutrino — electron elastic scattering
The known, pure electro-weak, cross section
But small cross section - relatively small sample size
Could be a powerful tool for DUNE (higher beam energy and larger ND target size)
= Low-v (energy transfer to the target nucleus/nuclear recoil energy) flux method

Approximately constant cross section for events with v < cutoff v)( <K E,)

Extract neutrino flux shape from the shape of the neutrino CC event spectrum for v< v,

Relatively limited sample size

Could be a useful tool for DUNE
= “PRISM” (off-axis flux sampling for linear combination) method

Break degeneracies in @(E), o(E) with many off-axis measurements (different flux shapes)
Minimize neutrino-nuclear interaction model dependence and possible biases
DUNE-PRISM (DUNE), nu-PRISM (HyperK)
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Additional Tools for Flux Determinations

A. Himmel, Neutrino 2020
NOVA Preliminary NOVA Preliminary

Event-by-event neutron kinetic [G—_ :
energy determination

Near-Far Uncor.

= Improve constraints with both R -
canonical and low-v methods [EELE= .

Beam Flux

Total Syst. Unc.

- I m p rove a nti o n u fl u X Statistical Uncertainty .
determination . 204 0.6

Uncertainty in sin’,, Uncertainty in A m2, ( x10° eV?)

p SuperFG D/T2K upgrade and (a) Neutrino CCQE: (b)  Antineutrino CCQE:
3DST/DUNE ND SAND

) G @ 0
STV (Single Transverse ‘g \"ff\a
Variables) . -®

= Small op; cut allows selection of
clean sample of neutrino
interactions on H and also on C
w/ relatively little nuclear effects
—> stronger constraints on
neutrino flux
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T2K-I/T2K-II Projected Sensitivities for sind,,
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T2K-Il Main Goal: search for CPV in neutrinos
~4 months/year data taking runs until the beginning of the HyperK data taking
- Need to reduce systemtic uncertainties > ND280 upgrade (summer 2022)
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T2K Near Detector Complex

Off-Axis Detectors

- 0.2 T magnet

- vflux/spectrum _ | |

- cross-sections - ;f , 2 50 off-axis

L\
On-Axis Detector (INGR 3
- v beam direction, profile on-axis v, beam
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Neutrino/Antineutrino Flux Predictions and
Uncertainties

Tuned run1-10b flux at ND280 T2K Preliminary Tuned run5c-9d flux at ND280 T2K Preliminary
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Flux and X-sec Constraints with NID280
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Uncertainty on the Number of Events
in each SK Sample

1Ru 1Re
Error source (units: %) || FHC RHC

FHC RHC FHC CClxt | FHC/RHC

Pre-ND Fit

Cross-section (all) 10.1  10.1 || 11.9 10.3
SK+SI+PN 2.9 2.5 3.3 4.4

| 111 113 || 13.0 121

1Ru 1Re
Error source (units: %) H FHC RHC H FHC RHC FHC CClz* | FHC/RHC

Flux ] 29 28 || 2 . 8 :
oo (Do) 8180 [ 82 a1 da |15 RS

Flux+Xsec (ND constr) 2.1 2.3 2.0 2.3
Xsec (ND unconstrained) || 0.6 2.5 3.0 3.6
SK+SI+PN 2.1 1.9 3.1 3.9

3.0 4.0 4.7 2.9

most relevant for extracting CPV effect
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ND280 Upgrade

- 6 ToF modules all
around the new tracker

- Reduces background
due to confusion of
muon direction

- Detectors are being
constructed, and will be
installed by summer
arXiv:1901.03750 2022 for beam data
CERN-SPSC-2018-001/ SPSC-P-357 ERPV(|sloRIaWi=1| A0

Downstream

E 4E

- Preliminary studies show a factor 2-3 “e
E “C9E CCQE formula

improvements in the precision of measuring b B LU

the cross-section uncertainties (and similarly %dgfﬂsz'?' gr:]hueon
for flux), for the same statistics of ND280  IE Sinfoonly) °

e.g.) better neutrino energy reconstruction o M

using proton information in QE events (TDR
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DUNE ND Current Concept Configuration
(A robust system of complementary subsystems)

Scintillator based Multi-Purpose Detector LArTPC as FD

Spectrometer (SAND) - HPgTPC (high res. & low E - Modular design w/ pixel
- 3DST+low den. tracker  threshold on Ar target) readout

- KLOE ECAL & magnet - ECAL (high performance) - High Stat on Ar target

- On-axis beam monitor - B-field (spectrometry of the
exiting muons from LArTPC)

o M e, m Mo e
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DUNE Flux Constraint by
Neutrino-electron Elastic Scattering in ND-LAr

= ~5000 LAr ND events/year
— Reduced stat. under DUNE-PRISM

= A powerful additional tool for achieving DUNE’s sensitivities, and resolving flux
<> Cross section ambiguities
Ee
5 years, 30 t LAr FV, 1.2 MW beam E, = T E(—cos0)

m

Perfect 30 !Nl - Strong normalization contraint due
Prefit RN to known XSEC
: Bl - Weak shape constraint due to

detector smearing and beam
divergence

- The prefit uncertainty may need to
be updated

Flux uncertainty

Phys.Rev.D 101 (2020) 3, 032002

Snowmass21 NF09, Dec. 2, 2020 Chang Kee Jung Q\\\‘ Stony Brook University




DUNE-PRISM

work in progress
v-mode, v

\
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/
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Move LArTPC&MPD off—aX|s
— Sample difference E,

Produce FD oscillated spectra (or

any arbitrary spectra) by a linear
combination of the off-axis samples

— Break cross-section model
degeneracies

E, (GeV)

T
s " £ o ¢ —3
sin’ oz = 0.6, Amiy = 2.2 x 103
— Fluxes up to 33m
---- Fit region

2 per POT per 1 GeV] (bv (Cm-z per POT per 1 GeV)

P [em

se)

sc.)

= Reduce overall dependence on the
cross-section model and biases
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SAND (System of on-Axis Neutrino Detector)

Tracker Reference Design:
3DST + Low Density Tracker
(either TPC or STT)

MAGNET (0.6 T)

Tracker Alternative Design:
STT + mLAr
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Fundamentals of

DUNE 3DST & T2K SuperFGD

= Plastic scintillator + WLS fiber + MPPC
= Fully active target

- 1x1x1 cm? scintillator cubes assembled in
rows and columns

= Provide 3D projected views w/ fine
segmentation

- 47 acceptance w/ low momentum
threshold for protons (~300 MeV)

- Momentum-by-range: ~ 2-3% for stopping
muons

= High light yield
- ~50 p.e. for MIP
= Good timing resolution

- ~0.95 ns for 1 channel, ~0.5 ns for 1 cube \

— Event-by-event neutron KE measurement
using TOF Ne \SUCC

“WI gsSemnyéf\\TNR, RusSia
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Beam Monitoring w/ SAND (Reference Design)

= A good sensitivity to relatively small spectrum variations in one week time

scale, afforded by:

= High statistics resulting from the large mass of 3DST+ECAL

— The excellent energy/momentum resolutions of combined 3DST, ECAL and

TPC system

= The sensitivities are compared with those from four 7-ton “INGRID-like”
modules placed at 0, 1, 2, 3 meters from the on-axis position
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Parameter description Significance, /x>
Beam parameter Nominal Changed Rate-only monitor | SAND

proton torget density | 171 g/em’ | 178 glam |
roton beam wicth | 27mm | 28mm

proton beam offset x || N/A
proton beam theta N/A
proton beam 6¢

water layer thickness
decay pip raiv

horn 1 along x 0.5 mm
horn 1 along y
horn 2 along x
horn 2 along y
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Event-by-event Neutron KE Measurement in

DUNE 3DST utilizing TOF

== 1 MeV

Neutron KE Resolution — 5 Mev

ol = 3DST best suited for neutron KE
measurement

Time [ns]

= Fine granularity and sub-nano sec
timing resolution (~.5 ns for 3 fibers)

— Large fully active mass for neutron
interactions (low-A nuclei & scintillating)

= Low energy threshold (1 p.e. ~60 keV)

140 160 180 200
Lever Arm [cm]

20

Time [ns]
X

(1/N)dN/d

95% purity with
60% efficiency

U}O—ﬁaw (S,B): (0.0, 0.0)%/ (0.0, 0.0)%

0 %6 05 ‘04 ‘o3 o
180 200 09 . BDT response
Lever Arm [cm] work in progress
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Importance of Event-by-event
Neutron KE Measurement

Event-by-event neutron energy measurement is one of the final, if not the
final, frontiers in particle physics experiment

= Allows full event reconstruction
- Detailed studies of neutrino interaction models

- Measurement of antinu flux, especially using antinu—hydrogen interactions
which has limited model dependence (PRD 101, 092003 (2020) - next slide)

Resolution on enerqy transferred to the nucleus (v) workin progress
No neutron detection Neutron detection w/ KE measurement
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= Very good neutron detection efficiency and very low out-FV background
Recent paper from Minerva (PRD 100, 052002 (2019))
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Neutron KE Measurement and

Antineutrino Flux Measurement w/ T2K SuperFGD

PRD.101.092003

Vu+p—>/,j++n

Improved reconstructed antineutrino
energy resolution utilizing neutron KE
measurement and op;(STV)

opr < 40 MeV/cand a 10 cm lever-arm cut
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LANSCE Neutron Beam Test Facility

VNF Flux at 90 meter location
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Structure for . oth | 0_800 Mev
LANL Beam Test delivered elsowhere (347 e 1ses)

| Dec. 2019 data taking
- ~3 weeks at 15L 90 m location

N > rime — ~3 days at 15R 20 m location

Beginning of macropulse/spill 0 /s Micropulses 4
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ata acquistion starts e ’uc,% eC a a a In

—

o at ‘ ‘ | | | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ - ~3 weeks at 15L 90 m location
| X

start of
macropulse

-> Data taking run started today!!!
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Neutron Beam Test Data

hist1
Entries  2.264302e+08
Mean 9.523e+04
Std Dev 820.3

hist1
Hits Corresponding Entries  2.2643020+08

Mean 9.456e+04

to phOtonS Std Dev 2037

7000

6000

Number of entries

I(‘IIIIIIIIIIIIII

Number of entries

g]llllllllllllllllIll]llll]lllllll

5000 Hits corresponding

to neutrons
4000

Z00m 3000

2000

1000

3
w LT
(=]
or

PRI B P I S TR N T NN TN Y N N AN N N N S| v b b Py v v v by v v by by Iy

94500 95000 95500 96000 96500 94400 94500 94600 94700 94800 94900 95000
hitTimeFromSpill [2.5 ns] hitTimeFromSpill [2.5 ns]

Detector (SuperFGD prototype) was
rotated at various angles to
characterize the fiber/MPPC

responses
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Flux Determinations in HyperK

Input by M. Hartz
Off-axis Magnetized Tracker - T2K is Off-axis spanning intermediate

upgrading ND280, expect additional water Cherenkov detector IWCD
upgrades for HK

On-axis Detector (INGRID)

T2K ND280 Upgrade
UA1 Magnet Yoke %

Downstream
l ECAL

Barrel ECAL

— HK Intrinsic ve

- At HyperK beam energy, methods to constraint flux such as low-v or o6 1 o
neutrino-electron scattering don’t work well — IWCD Intrinsic ve

. . . can measure
- Rely on prior flux model constrained by beam monitors and hadron background with

production data - continue T2K-Il canonical method 02 ", 2.5% precision
- Beam direction measured with < 0.25 mrad accuracy

- Uncertainty on predicted peak E of neutrino spectrum < 2 MeV

- Control of intrinsic v, and NC background using IWCD

- Spectrum of electron (anti)neutrinos at IWCD matches HK
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Conclusion

= Needless to say, discovery of CPV in neutrino oscillations will require
stringent control of systematic uncertainties, especially if dcp is away from
— 712

= |t would be prudent to aim to reduce neutrino flux related uncertainties
to ~1% level

= \We will need continuing improvement in all aspects of flux determination
VANID)

- External inputs (flux predictions and cross-section modeling, ...)
- Detectors (high resolution, full acceptance, ...)

- New methods (neutrino-electron scattering, low-v, PRISM, ...)

- New tools (neutron, STV, ...)

- event-by-event determination of neutron KE could be a
powerful new tool!
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