Neutrino Flux Instrumentation at Spallation Neutron Sources

Snowmass NF09 Workshop: Artificial Neutrino Sources

Diana Parno, Carnegie Mellon University 3 December 2020

- Neutrino production at spallation neutron sources
- Modeling the neutrino flux
- Direct flux measurements

Spallation Neutron Sources

- Energetic protons (~ few GeV) strike a heavy nuclear target
- This knocks loose neutrons, protons, alphas, and deuterons which knock loose other particles in turn
- Neutrons are moderated and guided along beamlines for various scientific purposes:
 - Materials studies
 - Glasses
 - Liquids
 - Films
 - Crystals
 - Biological structures
 - Dynamic imaging
 - Neutron science

Parno -- Neutrino Flux Instrumentation at Spallation Neutron Sources

Spallation Neutrino Sources

- The initial interaction also creates mesons!
- Meson products stop in the dense source and then decay at rest

Pion decay at rest

11/30/20

Parno -- Neutrino Flux Instrumentation at Spallation Neutron Sources

Neutrino Spectra

- Decay-at-rest sources mean welldefined energy spectra
- At lower beam energies, neutrinos originate only from pion decay
- As beam energy increases, kaon decay also contributes
- Pulsed beam structure improves background through timing

- Neutrino production at spallation neutron sources
- Modeling the neutrino flux
- Direct flux measurements

Flux Modeling

- Simulation of meson production
 - MCNP (Coherent Captain Mills, CEvNS@ESS)
 - Geant4 (CEvNS@ESS, JSNS², COHERENT)
 - FLUKA (CEvNS@ESS, JSNS²)
- Peg to world pion-production data
 - Doesn't include all targets (no Hg data)
 - Mostly too high energy ($E_p \ge 3 \text{ GeV}$)
 - Limited low-energy data available

Upcoming EMPHATIC experiment: multiple targets at $E_p \ge 2$ GeV

Workshop next week: NA61/SHINE at Low Energies

https://indico.cern.ch/event/973899/

Uncertainties in Pion Production

- HARP measured pion production at high precision for $E_p \ge 3$ GeV
 - Separate analyses by HARP-CDP group are available
- Double-differential cross sections in strong disagreement with Geant4 simulations
- At a DAR source, we can integrate over pion angle and momentum
 - Agreement within 10% for QGSP_BERT physics list at high A

Plot by Rebecca Rapp and Aria Salyapongse

Meson Production in Spallation Targets

- Spallation targets are thick and protons lose energy throughout
- Meson-production cross sections must be integrated over proton energy-loss profile in source
- Surrounding materials also contribute to meson and neutrino production
- In situ v flux measurements can make an important contribution

- Neutrino production at spallation neutron sources
- Modeling the neutrino flux
- Direct flux measurements

11

Two Sterile-Search Strategies

- At LANSCE, Coherent Captain Mills has a near/far detector combo
- At JSNS², carbon in the liquid scintillator is sensitive to v_e

 $\nu_{e} + {}^{12}\text{C} \rightarrow e^{-} + {}^{12}\text{N}$

- The measured v_e flux also corresponds to the \bar{v}_{μ} flux!
 - ~10% uncertainty due to cross section and detector efficiency

Experiment	$\sigma(^{12}C(v_e,e^-)^{12}N_{g.s.}) (10^{-42} \text{ cm}^2)$
KARMEN (PLB332, 251 (1994))	9.1±0.5±0.8 (10.4%)
LSND (PRC64, 065501 (2001))	8.9±0.3±0.9 (10.7%)

 $^{12}N \rightarrow ^{12}C + e^+ + \nu_{\rho}$

• ~50% uncertainty on $\bar{\nu}_e$ flux from μ^- decay (needed for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$)

• 2nd detector for JSNS²-II will dramatically reduce flux uncertainties 11/30/20 Parno -- Neutrino Flux Instrumentation at Spallation Neutron Sources

Table from Carsten Rott

D₂O as Flux Tool

• Target the charged-current reaction

$$\nu_e + d^+ \rightarrow p^+ + p^+ + e^-$$

- Cherenkov detector tags fast-moving electron
- This interaction has been measured at LAMPF (Willis et al., PRL 44 522 (1980))

• Predicted cross sections from different theoretical models agree within 2-3%

"This work": Pionless EFT from Ando, Song, and Hyun, PRC **101** 054001 (2020)

"SNPA": Phenomenological Lagrangian approach from Nakamura, Sato, Gudkov, and Kubodera, PRC **63** 034617 (2001)

 COHERENT and CEvNS@ESS both plan D₂O detectors to benchmark neutrino flux

COHERENT's D₂O Demonstrator Plans

- Designed around space constraints in SNS's Neutrino Alley
- 687 kg of D₂O in central fiducial volume, enclosed in transparent acrylic
- External 10-cm H₂O "tail catcher" aids energy reconstruction
- Outer steel tank lined in reflective Tyvek
- 12 PMTs view water from above
- Lead shielding and plastic-scintillator muon veto surround the steel tank
- First funding received from DOE!
 - \bullet D2O loans received from several sources

Model from Eric Day, CMU

11/30/20

Simulation from Rebecca Rapp, CMU

Expected Performance

Outlook

- The next few years
 - COHERENT: Build, test, and deploy D₂O demonstrator module
 - COHERENT: Follow up with second module
 - JSNS²: Measurements on carbon
- And beyond ...
 - New pion-production measurements at low energies from EMPHATIC and NA61/SHINE
 - CEvNS@ESS D₂O design and deployment
- •nanks The COHERENT collaboration
 - Juanjo Gomez Cadenas (CEvNS@ESS)
 - Takasumi Maruyama (JSNS²)
 - Richard Van de Water (Coherent Captain Mills)
- DOE Office of Science, Award Number #DE-SC0010118