Matching and error corrections for the Project X linac

PARTI meeting

13 July 2011

Aliaksei Halavanau Belarusian State University

Supervisors: Nikolay Solyak, Jean-Francois Ostiguy APC-SRF Machine Physics Department

Project X linac layout

 $W_{in} = 2.1 MeV$

Section	Freq	Energy (MeV)	Cav/mag/CM	Туре
SSR0 ($\beta_{\rm G}$ =0.11)	325	2.1-10	18 /18/1	SSR, solenoid
SSR1 ($\beta_{\rm G}$ =0.22)	325	10-42	20/20/ 2	SSR, solenoid
SSR2 ($\beta_{\rm G}$ =0.4)	325	42-160	40/20/4	SSR, solenoid
LB 650 (β _G =0.61)	650	160-460	36 /24/6	5-cell elliptical, doublet
HB 650 (β _G =0.9)	650	460-3000	160/40/20	5-cell elliptical, doublet
ILC 1.3 ($\beta_{\rm G}$ =1.0)	1300	3000-8000	224 /28 /28	9-cell elliptical, quad (FODO)

Matching problem

The beam is <u>matched</u> when its envelope is periodic with the lattice period. Then the same phasespace distribution is reproduced period after period. Beam is <u>mismatched</u> when it is not true.

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+L_p} = \begin{pmatrix} \cos \Delta \psi_{L_p} + \alpha \sin \Delta \psi_{L_p} & \beta \sin \Delta \psi_{L_p} \\ -\gamma \sin \Delta \psi_{L_p} & \cos \Delta \psi_{L_p} - \alpha \sin \Delta \psi_{L_p} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}^{x}$$
The matrix equation describing the motion
$$\beta(s) = w^2(s) \qquad \alpha(s) = -\frac{1}{2} \frac{d\beta(s)}{ds} \qquad \gamma(s) = \frac{1+\alpha^2}{\beta}$$
Courant-Snyder parameters

$$\beta_{w} = \frac{w^{2}}{\varepsilon_{w}} \qquad \gamma_{w} = \frac{w'^{2}}{\varepsilon_{w}} \qquad \widetilde{\alpha_{w}} = -\frac{\langle (w - \langle w \rangle)(w' - \langle w' \rangle) \rangle}{\varepsilon_{w}} \qquad \text{Twiss parameters}$$

For the ideal periodic lattice the beam is matched when its Twiss parameters correspond to the lattice Courant-Snyder parameters

Software

TRACK (P. Ostroumov, ANL) matching is very slow and limited, because it requires tracking the whole beam, "black box" (no source code) **TraceWin** (commercial CEA/Saclay), good matching routines, welldocumented, "black box" (no source code)

• For design purposes we often need to match lattice functions between different sections of linac

Goals

- Taking advantages of the existing facilities provided by TRACK write stand-alone procedures to perform the matching and error correction.
- Study sensitivity to the initial conditions (Twiss parameters centroid mismatch)
- Establish misalignment tolerances
- Optimize the number of correctors needed
- Investigate optics reconfiguration that would allow operation following cavity/solenoid/magnet fail