

Detector & Electronincs R&D Project-X Working Group Meeting IUAC, New Delhi, 18 June 2011

Sunil K. Gupta Tata Institute of Fundamental Research, Mumbai

Linear
Trigger

3. Signal Processing

Indranil Mazumdar & Co-workers Nucl. Instrum. Methods A 611 (2009) 76

Nal(Tl)

Counts

Resolution: 7.5% @661.6 keV

LaBr₃:Ce Resolution: < 3% @661.6 keV

- Note:
- •Diifferences in energy resolutions
- •Differences in p/v ratios
- •New peaks in LaBr spectrum

Silicon Photomultiplier

- APD operated above breakdown voltage
 - Geiger response mode
- Essentially a logical device
 - Photon counting by an array of diodes in small area

Silicon Photomultiplier Development

- SiPM characterization facility at GRAPES-3 in Ooty
 - Setup for V-I characteristic, single pixel calibration, linearity, MIP sensitivity etc.
 - Micron resolution optical scanner for studying pixel-to-pixel response to be developed soon at TIFR, Mumbai
- Packaging and assembly of the device
 - For bare SiPMs from HCAL-CMS at BEL, Bangalore
- Device and Process Simulation
 - Under progress
- Fabrication
 - BEL, Banglore
 - Semiconductor Complex Limited, Chandigarh
 - 1st Prototyping Run anticipated in 2011-2012

SiPM Response using LED at Ooty

GRAPES-3 Experiment Ooty (11.4N, 76.7E, 2200m) 400 Scintillator detectors (1 m² area) 560 m² muon detector (E =1 GeV)

Objective: Universe at high energies

Acceleration, propagation of highest energy particles, Extreme conditions may require new physics ...

- 1. Acceleration of particles in atmospheric electric field Energy ~100 MeV Scale ~10⁵-10⁶ cm
- 2. Solar flares, Coronal Mass Ejections Energy ~10 GeV Scale ~10¹¹-10¹³ cm
- 3. Galactic Cosmic Rays at "Knee" Energy ~1 PeV Scale ~10²¹-10²³ cm
- 4. Diffuse multi-TeV γ -rays Energy ~100 EeV Scale ~10²⁴-10²⁶ cm

Thunderstorm Event

Press, corrected inclusive Nean Angle Rate (Hz)(/st) after validation: 20101026, 000408 to 20101026 235959

Energy ~ 100 MeV Scale $\sim 10^{5}$ - 10^{6} cm

Time

GRAPES-3 Lat. = 11° 23' 26" N Long. = 76° 39' 50" E

Fabrication of Plastic Scintillator

Plastic Scintillator development:

Decay Time= 1.6 ns Output = 54% Anthracene Timing 25% faster Atten. Length λ = 100 cm Low Cost Max Size 100 cmX100 cm Total > 2000

TIFR, CERN, Osaka, IUAC Delhi, Bose, VECC, etc.

FILE: NSPAhst401572-2 txt

Proportional Counter Test Setup

MWPC development at IUAC, New Delhi

TOF System for fission experiments

MWPC 8 "X 4 " Electrodes : Au plated W wires -20μ Electrode separation : 3.5 mm Rise time ~ 10 ns TOF ~ 1 ns (fwhm), Positions ~ 1 mm (fwhm)

Small transmission MWPC 1.5 " X 1.5 " Electrodes : Au plated W wires -20 μ Electrode separation : 2 mm Entrance and exit foils : 0.5 μ mylar. Rise times ~ 3.5 ns, TOF < 0.5 ns

Ref : A. Jhingan et. al. Rev. Sci. Instr. 80, 123502 (2009)

2mx2m RPCs in Cosmic test

D California TIPD Manager ! India

http://www.ino.tifr.res.in/ino/talks.php

Performance of HPTDC (Stop Watch)

32 Channels 100 ps time resolution Multi-hit capability Huge dynamic range (100 ps - 50 μs) Trigger mode (avoids delay cables)

Requests: Atomic, Chemistry, Biology in TIFR, Oulu Finland, IUAC Delhi, Bose Institute, BARC etc.

Current Scene

Gaseous Detectors: Multi Wire Proportional Counters

Scintillator Detectors: Plastic Scintillators

Semiconductor Detectors: Double-sided Silicon Detectors, Silicon Photomultipliers

Electronics: Digital Signal Processing

Challenges in Detection & Measurement of Charged Particles & Photons

Timing $\sim 10 \text{ ps}$ Position $\sim 50 \mu$ Direction $\sim 1 \mu \text{ ad}$ Sensor Area $\sim 10 X$ Quantum Eff $\sim 100\%$ Rad Harder

