Nuclear Physics at Project-x

R. K. Choudhury

Nuclear Physics Division Bhabha Atomic Physics Division Mumbai 40085

Plan of talk

1. Present studies

- Reaction studies involving weakly bound stable projectiles
- Weak interaction study by n+p→d+gamma measurement

2. Intent for Project-x

- Nuclear structure and reaction studies
 involving RIBs
- Electric Dipole Measurement

Weakly bound projectiles are interesting, why?

Low breakup threshold

Stable ions ⁶Li $\rightarrow \alpha + d$, $S_{\alpha d} = 1.48$ MeV, ⁷Li $\rightarrow \alpha + t$, $S_{\alpha t} = 2.45$ MeV, ⁹Be $\rightarrow \alpha + \alpha + n$, $S_{\alpha n} = 1.57$ MeV,

- Study simulates
 reactions involving RIBs
- Formation probability of SHE
- Extrapolation to low energy capture cross section → Astrophysical interest

Advantage→Stable and large intensity

Unstable ions ⁶He $\rightarrow \alpha$ +2n, S_{α 2n}=0.97 MeV,

Fusion involving weakly bound projectiles

Fusion in presence of breakup channel
→enhance fusion due to coupling /
→suppress fusion due to loss of flux ???

P.K. Rath, S. Santra et al., PRC 79, 051601(R) (2009)

C. S. Palshetkar, S. Santra et al., PRC 82, 044608 (2010)

Systematics of fusion suppression

→Complete fusion at energies above the Coulomb barrier gets suppressed

Projectile	Breakup threshold	Target	Supp. factor	Reference
⁶ Li	S _{αd} =1.48	²⁰⁹ Bi	36%	PRC 70, 024606 (2004).
⁶ Li		²⁰⁸ Pb	34%	PRC 68, 044605 (2003).
⁶ Li		¹⁴⁴ Sm	32%	PRC 79, 051601(2009)
⁹ Be	$S_{\alpha\alpha n} = 1.57$	²⁰⁸ Pb	32%	PRC 89, 272701 (2002)
⁹ Be		¹⁴⁴ Sm	10%	PRC 73, 064606 (2006)
⁹ Be		¹²⁴ Sn	28%	PRC 82, 054601 (2010)
⁹ Be		⁸⁹ Y	20%	PRC 82, 044608 (2010)
⁷ Li	$S_{\alpha t}=2.45$	²⁰⁹ Bi	26%	PRC 70, 024606 (2004).
⁷ Li		¹⁶⁵ Ho	18%	PRC 79, 051601(2009)
⁷ Li		¹⁶⁵ Tb	26%	PLB 636, 91 (2006).

→Complete fusion suppression increases with target atomic number
 → It decreases with the increase of projectile breakup threshold

Resonant breakup in ⁶Li+²⁰⁹Bi: Forward-backward asymmetry

S. Santra et al., PLB 677, 139 (2009) T_α is forward to T_d: →Distinct forward-backward asymmetry in the yields of sequential peaks →Low energy α-peak is enhanced

Anisotropy

→Anisotropic distribution of breakup fragments in rest frame of ⁶Li

- (1) could arise from strong polarization of clustered ⁶Li in the field of ²⁰⁹Bi
- (2) reorientation effect due to static quadrupole moment of 3⁺ state

 \rightarrow 3⁺ state corresponds to *l*=2 state \rightarrow emission of α and *d* in the rest frame of ⁶Li would not be isotropic

Energy dependence of OM and polarization potential

→Effective (dash-dot) i.e., bare (short dashed) + polarization (long dashed) potential is close to OM potential (hollow circles)

→∆Wp becomes more attractive at sub-barrier energies

> S. Santra et al., PRC 83, 034616 (2011)

α -particle production

1. Measurements involving the projectiles (6,7 Li, 6 He, 9 Be) with α +x cluster structure show significantly large cross sections for α -particle production

 \rightarrow a part of it from breakup (direct or sequential) \rightarrow In addition to transfer of x to the target and others

2. Exclusive measurements of α -particles are essential to delineate different processes leading to such a large inclusive cross section

Inclusive breakup, fusion and reaction cross sections

→Inclusive breakup very large ~σ_{Rreaction} @ low energies

 $\rightarrow \sigma$ (Incl. alpha+CF) ~ $\sigma_{\text{Rreaction}}$

→At high energies, CF data is suppressed by ~30-40% compared to BPM fusion

→Delineation of exclusive contributions to large alpha is necessary

Measurement of parity violating γ-asymmetry in the capture of cold neutron by para-hydrogen

Measurement of parity violating γ-asymmetry in the capture of cold neutron by para-hydrogen

- We will measure A_{γ} , the parity-violating asymmetry in the distribution (d σ /d Ω) of emitted γ 's.
- Expected asymmetry ≈ -5.0x10⁻⁸
- Goal experimental error ~ 0.5x10⁻⁸
- The asymmetry depends mainly on the $\Delta I=1$ weak pion coupling H_{π}^{1} , $\rightarrow A_{\gamma} \approx -0.045 H_{\pi}^{1}$ (for n-p system)
- Being 2-body system, no structural uncertainty \Rightarrow An unambiguous measurement of H_{π}^{-1} .

Liquid Para-Hydrogen Target : - the heart of the experiment

Target vessel, cryogens and the main vacuum chamber

S. Santra et al., NIM 620, 421 (2011)

Beam

Assembly of the Target, And CsI Detectors

Present Status and future plans

n+p→d+γ

- Experiment at LANSCE is completed with limited statictics (measured asymmetry at LANSCE of (1.27±2.1(stat.))10⁻⁷)
- ➤ Experiment is moved to Spallation Neutron Source (SNS), ORNL → 1st experiment in FnPB of SNS
- SNS, with 1.4 MW power, is the brightest in the world
- ➢ Neutron flux is ~12 times more than LANSCE
- SM bender polarizer instead of 3He spin filter provides a gain of 4 to polarized neutrons
- > The sensitivity, $\Delta A_{\gamma}/A_{\gamma}$, of 5x10⁻⁹ is expected to be achieved by 2011-2012.

$n+d \rightarrow t+\gamma$ at SNS

Proposal is made. Provides another hadronic weak coupling constant **Scope in Project-x**

1. Electric Dipole Moment Measurement using 225Ra, 223Rn, 221Fr, etc

2. Nuclear structure and dynamics study using radioactive ion beams

EDM measurement on ²²⁵Ra and ²²³Rn

1. EDM measurement of ²²⁵Ra is going on at Argonne National Laboratory

2. Michigan university is planning to measure the EDM of ²²³Rn using TRIUMF facility

Project X: Target Spallation Production

Protons on thorium target: 1 mA x 1000 MeV = 1 MW

Predicted yields of some important isotopes (~10²-10⁴ x present):

Radon:	²¹⁹ Rn >10 ¹⁴	²²³ Rn ~10 ¹¹ /s			
Francium:	²¹¹ Fr ∼10 ¹³	²²¹ Fr >10 ¹⁴	²²³ Fr >10 ¹² /s		
Radium:	²²³ Ra >10 ¹⁴	²²⁵ Ra >10 ¹³ /s		Yields simulated by I.C. Gomes using MCNPX,	
Actinium:	²²⁵⁻²²⁹ Ac >10 ¹⁴	'/s		Project X workshop, October 2009	

Project X will enable a new generation of fundamental symmetry-test experiments, and bring exciting opportunities for discovering physics beyond the Standard Model.

Search for ²²⁵Ra EDM at Project -X

Present scheme

```
1 mCi <sup>229</sup>Th source \rightarrow 4 x 10<sup>7</sup> s<sup>-1 225</sup>Ra
```

- Upgrade path to 10 mCi
- Projected EDM sensitivity: 10⁻²⁶ 10⁻²⁷ e-cm
- Equivalent to 10⁻²⁸ 10⁻³⁰ e-cm for ¹⁹⁹Hg
- Current limit on ¹⁹⁹Hg: 2 x 10⁻²⁸ e-cm

Search for ²²⁵Ra EDM at Project X

Project X yield: 1 x 10¹³ s^{-1 225}Ra

- Projected EDM sensitivity: 10⁻²⁸ e-cm
- Equivalent to 10⁻³⁰ 10⁻³¹ e-cm for ¹⁹⁹Hg
- Study systematics at 10⁻²⁹ e-cm for ²²⁵Ra

Radon-EDM Experiment

TRIUMF E929 Spokesperson

T. Chupp (Univ of Michigan) C. Svensson (Guelph)

Funding: NSF, DOE, NRC (TRIUMF), NSERC

Produce rare ion radon beam

- Collect in cell with co-magnetometer
- Measure free precession

(γ anisotropy or β asymmetry)

²²³Rn (23 min) EDM projected sensitivity

Facility	²²³ Rn Yield	S _d (100 d)	
ISAC	$10^7 - 10^8 \text{ s}^{-1}$	10 ⁻²⁶ - 10 ⁻²⁷ e-	
		cm	~ 10 ⁻³⁰ e-cm
Project X	10^{11} s^{-1}	10 ⁻²⁸ e-cm	TOP

• First, we want to participate in the ongoing measurements on EDM at ANL and TRIUMF

• Parallely, we plan to prepare for the EDM measurements at project-x

Proposal - 2

Study of nuclear structure and dynamics using RIB

- Radioactive isotopes produced in the spallation by high intensity proton beam can be accelerated and then used as secondary beam for above studies
- Reaction studies using RIBs have implications in the field of (i) Super Heavy Elements formation, (ii) Reactions of astrophysical interest, etc.
- The study of structure of the nuclei near the neutron and proton drip lines is a very interesting field

• We propose for a beam line involving postacceleration of the radioactive isotopes produced in the spallation

 Plan for experiments using secondary beams for the study of nuclear structure and dynamics

Thank You

Inclusive and exclusive α -production

S. Santra et al., To be submitted to PRC →Total $\sigma_{\alpha d}$ (theory) << σ_{α} (incl)

 $\rightarrow \sigma_{\alpha p}(exp) + \sigma_{\alpha d}(th) < \sigma_{\alpha}(incl)$

→Other possible sources : (1) (⁶Li, α) (2) (⁶Li,⁵He→n+ α) (3) (⁶Li,⁷Li→ α +t) (4) partial fusion (d-cap)

→ICF (d-cap) contribution is maximum →ICF+(α -d) breakup gives most alphas →Understood the origin of large inclusive alpha