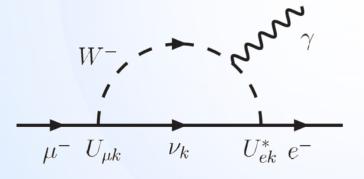
Rahul Sinha The Institute of Mathematical Sciences, Chennai, INDIA

Processes at Project

Project X meeting

Inter-University Accelerator Center June 17-18, 2011

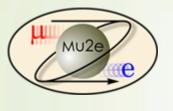

µ decays –Why Muons?

- Low-energy μ processes in certain cases constitute a powerful unique probe of new physics around the electroweak scale. Similar sensitivity to new physics energy scale as achievable at high-energy colliders.
- Constraint from g-2 of μ among the most stringent tests of the Standard Model.
- μ decay is the cleanest weak decay process. It provides measurement of G_F, which is used as input for computing other electroweak observables. Polarized μ decay are still very sensitive to New Physics.

- Flavor Changing Neutral Current processes observed in the quark sector $(K^0 - \overline{K^0}, b \rightarrow s\gamma, ...)$
- Charged Lepton Flavor Violation (CLFV) not yet observed.

Rates depend significantly on physics that gives mass to neutrinos

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$


In SM GIM suppression seems to far more severe for lepton sector than quark sector

 Measurements that are small in SM are good places to look for NP

$\mu \rightarrow e\gamma, \mu^- Z \rightarrow e^- Z$

- Current upper bound $Br(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$
- *MEG aims sensitivity to* $Br(\mu \rightarrow e\gamma) \leq 10^{-13}$
- Mu2e and COMET expect $Br(\mu \rightarrow e\gamma) \le 10^{-17}$

Rely on stopping μ^- on target and observing e^- with energy equivalent to muon plus its binding energy. Require good electron energy resolution.

- Interesting measurement at Project X for both scenarios.
- If CLFV observed before Project X would allow precision studies with ~100 μ – e conversion events.
- If not Project X can achieve sensitivity of Br(μ → eγ) ≤ 10⁻¹⁹

 $\mu \rightarrow e \gamma$ and $\mu^+ \rightarrow e^+e^-e^-$ are limited at Project X due to accidental backgrounds but doable.

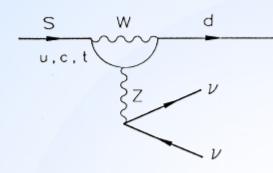
Project X can however measure τ_{μ} (Muon life time) with better precession.

Project X could produce intense beam of muonium. Conversion of muonium to anti-muonium in vacuum corresponds to $\Delta L = 2$

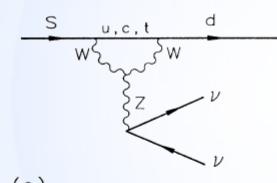
A permanent electric dipole moment of μ in SM $d_{\mu} \sim 10^{-35}$ e-cm. Current bound is $d_{\mu} \sim 1.8 \times 10^{-19}$ e-cm. Project X can achieve sensitivities of $d_{\mu} \sim 10^{-24}$ e-cm. Also, improvement in magnetic moment of μ , $a_{\mu} = \frac{g^{-2}}{2}$ achieveable.

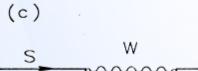
K decays Why study Rare Kaon Decays ? > Probe the flavor sector of the Standard Model FCNC > Test fundamental symmetries CP, T, CPT > Study the strong interactions at low energy Chiral Perturbation Theory, K structure > Exploring lepton mass matrix Unique possibility of measuring double beta decay analogue for μ > Search for explicit violation of Standard Model Lepton Flavor Violation.

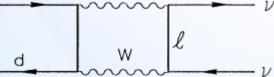
			<u> </u>
Rare decays:	K _L decays	$\Delta S =$	= 1
Mode	Expt. value		
• $lpha K_L o \pi^0 u \overline{ u}$	$< 6.7 \times 10^{-8}$	$= (2.7 \pm 0.4) \times 10^{-11}$	\uparrow
• $K_L o \pi^0 \pi^0 \nu \overline{ u}$	$< 4.7 \times 10^{-5}$		СР
	$<(3.11\pm0.19)\times10^{-7}$	7	
• $K_L \rightarrow \pi^0 \pi^0 e^+ e^-$	$< 6.6 \times 10^{-9}$		
• $K_L \rightarrow \mu^+ \mu^-$	$(6.84\pm 0.11)\times 10^{-9}$		
• $K_L \rightarrow e^+ e^-$			
• $K_L \rightarrow \pi^0 \mu^+ \mu^-$			
• $K_L \rightarrow \pi^0 e^+ e^-$			
• $K_L \to e^{\pm} \mu^{\mp}$			\uparrow
• $K_L \rightarrow e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp}$	$< 4.12 \times 10^{-11}$		
	$< 7.6 \times 10^{-11}$		LF
• $K_L \rightarrow \pi^0 \pi^0 e^{\pm} \mu^{\mp}$	$< 1.7 \times 10^{-10}$		
	7/12/2011 7		

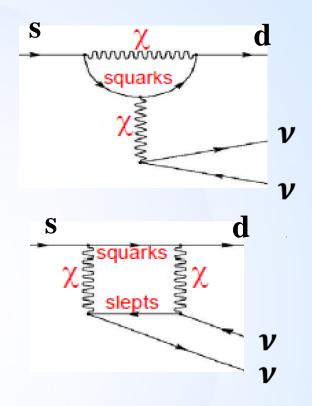

22		
K ⁺ decays		$\Delta S = 1$
• $\Leftrightarrow K^+ \to \pi^+ \nu \overline{\nu}$	$(1.7 \pm 1.1) imes 10^{-10}$	$= (8.5 \pm 0.07) \times 10^{-11}$
• $K^+ \rightarrow \pi^+ \pi^0 \nu^{\dagger}$	\overline{v} < 4.3 × 10 ⁻⁵	
• $K^+ \rightarrow \pi^+ e^+ e^-$	$(3.00 \pm 0.09) \times 10^{-7}$	
• $K^+ \rightarrow \pi^+ \mu^+ \mu$		
• $K^+ \rightarrow \mu^- \nu e^+ e^+$	e^+ 2.0 × 10 ⁻⁸	
• $K^+ \to \pi^+ \mu^+ e^+$	- < 1.3 × 10 ⁻¹¹	Lepton Family Number
• $K^+ \rightarrow \pi^+ e^+ \mu^-$		
• $K^+ \rightarrow \pi^- \mu^+ e^-$	+ < 5.0 × 10 ⁻¹⁰	
• $K^+ \rightarrow \pi^- e^+ e^-$	+ < 6.4 × 10 ⁻¹⁰	Lepton number
• $K^+ \rightarrow \pi^- \mu^+ \mu$	$^{+}$ < 3. 0 × 10 ⁻⁹	
• $K^+ \rightarrow \pi^+ \gamma$	$< 2.3 \times 10^{-9}$	Angular momentum
	7/12/2011 8	
	み くび 機構	R

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$


Theoretically clean mode


Buras: $K^+ \to \pi^+ \nu \overline{\nu}$, $K^0 \to \pi^0 \nu \overline{\nu}$, ratio x_d/x_s of $B_d^0 - \overline{B_d^0}$ to $B_s^0 - \overline{B_s^0}$ mixing and class of asymmetries in neutral B decays cleanest observables, being essentially free from hadronic uncertainties.


Hadronic matrix element of the operator $\overline{s\gamma}_{\mu}(1-\gamma_{5})d \ \overline{v\gamma}_{\mu}(1-v_{5})v$ can be measured in the leading decay $K^{+} \rightarrow \pi^{0}e^{+}v$ $B_{SD}(K^{+} \rightarrow \pi^{+}v\overline{v}) = \frac{\kappa_{+}\alpha^{2}B(\kappa_{e3})}{2\pi^{2}\sin^{4}\theta_{W}|V_{us}|^{2}}\sum_{l}|X_{l}\lambda_{l}+X_{c}\lambda_{c}|^{2} = \frac{SM}{8.9 \times 10^{-11}A^{4}}[(\rho_{0}-\overline{\rho})^{2}+\overline{\eta}^{2}] = (8.22 \pm 0.84) \times 10^{-11}$ $= (1.7 \pm 1.1) \times 10^{-10}$ \overline{k} 7/12/2011 9 (a)


(b)

SM contribution

SUSY Contribution

Project X sensitive to 1000 SM events. BSM rates 10x SM rates.

7/12/2011

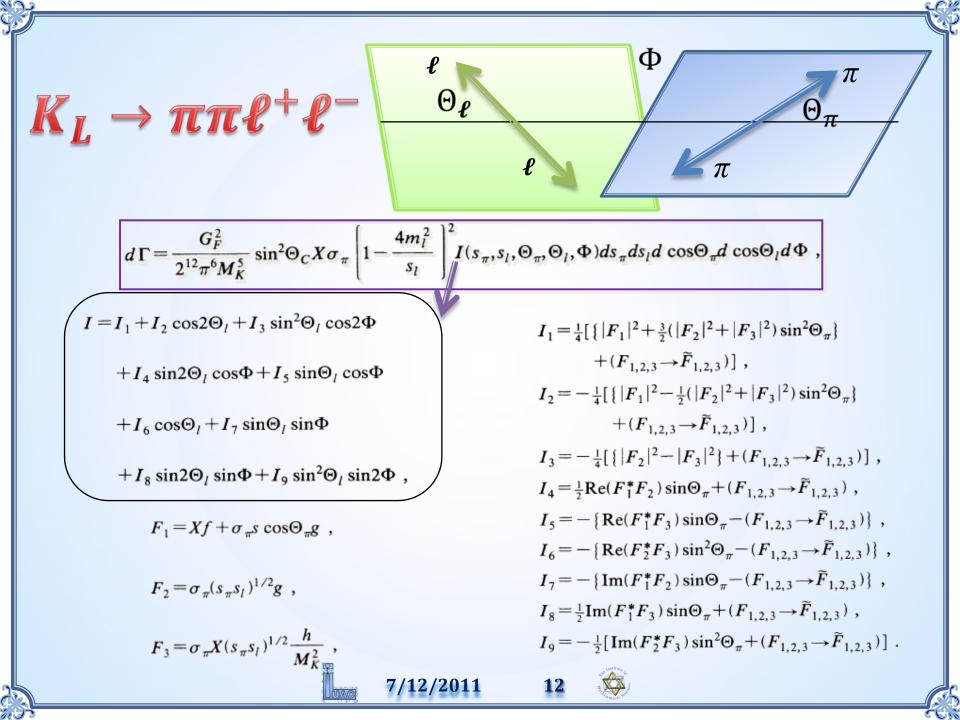
10

 $K_L \to \pi^0 \nu \overline{\nu}$

Buras: $K_L \to \pi^0 v \overline{v}$, $K^+ \to \pi^+ v \overline{v}$, ratio x_d/x_s of $B_d^0 - \overline{B_d^0}$ to $B_s^0 - \overline{B_s^0}$ mixing and class of asymmetries in neutral B decays cleanest observables, being essentially free from hadronic uncertainties.

• Purely CP-Violating (Littenberg, 1989)

- Totally dominated from t-quark
- •Computed to NLO in QCD (Buchalla, Buras, 1999)
- •No long distance contribution SM ~3 × 10⁻¹¹


$$B(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.76 \pm 0.4) \times 10^{-11}$$

$$B(K_L \to \pi^0 \nu \bar{\nu})_{Exp} < 10^{-8}$$

Backgrounds: $K_L \rightarrow 2\pi^0$, $\pi^0 e^+ e^-$, $\pi^0 \gamma \gamma$ Difficult mode to measure

Rates of $K^0 \to \pi^0 \nu \overline{\nu}$ and $K^+ \to \pi^+ \nu \overline{\nu}$ sensitive to NP models

$$\mathcal{A} = \frac{\int_{0}^{\pi/2} \frac{d\Gamma}{d\Phi} d\Phi - \int_{\pi/2}^{\pi} \frac{d\Gamma}{d\Phi} d\Phi}{\int_{0}^{\pi/2} \frac{d\Gamma}{d\Phi} d\Phi + \int_{\pi/2}^{\pi} \frac{d\Gamma}{d\Phi} d\Phi} \qquad \text{Strong phase}$$
$$= 15\% \sin[\Phi_{+}] + \delta_{0}(m_{K}^{2}) - \overline{\delta}]$$
$$\approx 14\% \qquad \text{Weak phase}$$

iger & Sehgal Phys. Rev. D48, 4146 (1993).

Weak phase

$$K_L \to \pi^+(p_+)\pi^-(p_-)\ell^+(k_+)\ell^-(k_-)$$

Under CP:
$$\begin{cases} p_{\pm} \stackrel{CP}{\rightarrow} - p_{\mp} & \cos \Theta_{\pi} \rightarrow -\cos \Theta_{\pi} & \sin \Theta_{\pi} \rightarrow \sin \Theta_{\pi} \\ k_{\pm} \stackrel{CP}{\rightarrow} - k_{\mp} & \cos \Theta_{\ell} \rightarrow -\cos \Theta_{\ell} & \sin \Theta_{\ell} \rightarrow \sin \Theta_{\ell} \\ & \cos \Phi \rightarrow \cos \Phi & \sin \Phi \rightarrow -\sin \Phi \end{cases}$$

Signal of T-reversal violation

Several papers supporting and several other disputing signal is genuine **T**-violation 7/12/2011 13

CPT is introduced through the Hamiltonian

$$\mathcal{H} = E \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix} - iD\mathcal{I} \quad CPT \text{ restored if } \theta = \frac{\pi}{2}$$

A complete calculation without CPT in mixing is underway.

CPT violation should be studied in K since large numbers of K mesons will be produced. Unlikely that CPT violation observed before Project X

An interacting theory that violates CPT invariance <u>necessarily</u> <u>violates Lorentz invariance</u>. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle mass <u>must be nonlocal</u>.

7/12/2011

Greenberg Phys. Rev. Lett. 89, 31602 (2002) Lot of work by A. Kosteleckỳ

Conclusion

- Lepon flavour violation is yet to be established.
 One should be prepared for surprises.
- Improvements in G_F are critical in precision tests of NP.
- After more than 60 years K meson continues to be produced in lab and is still a valuable source for understanding new physics.
- Will continue to be a studied <u>at least</u> until a 5σ signal is observed in $K_L \to \pi^0 \nu \overline{\nu}$.
- T and CPT studies need to be done. Large statistics will provide unique opportunity to do so.
 7/12/2011 15 🖗