Multi-loop amplitudes for colliders a Snowmass Letter of Interest

Tobias Neumann (BNL)

with Fernando Febres Cordero (FSU) and Andreas Manteuffel (MSU)

October 26, 2020

dreas Manteuffel (MS

Survey advances in perturbative methods for collider precision phenomenology emphasis on computational demands

$\int d\, PS$ scattering amplitudes in terms of loop integrals

- Scattering amplitudes
- Loop integrals
- Subtraction techniques and phase space integration

Amplitudes

- Numerical methods for high multiplicity amplitudes (1-loop, beginning 2-loop)
- Unitarity for multi-loop
- Reconstruction of efficient analytical expressions
- Automatization NLO EW; off-shell $t \bar{t} X$ at NLO

Master loop integrals

- Reduction to master integrals ("IBP", finite field, finite basis, canonical basis)
- Evaluation of integrals (polylogs, elliptic; numerical: diff. eq.; sector decomposition)

Higher-order subtractions

- Fully local subtractions and slicing methods
- Each advantages and drawbacks (computationally, reusability, extensibility)

To summarize

Current needs mostly satisfied sufficiently with a few dozen PCs...

(no inherent limitation compared to manpower and efficient techniques and algorithms)

... but HL-LHC era computing times likely to change this

- Current algorithms (scaling, parallelizable, runtime (debugging)...)
- HPC setup? (memory, disk storage, licenses, ...)
- HPC readiness? (MPI, OpenMP, checkpointing, ...)

Snowmass: Time to survey towards need of more dedicated HPC support

