
Status of Patatrack pixel tracking use case

Matti Kortelainen
HEP-CCE F2F meeting
5 November 2020



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• The overall approach of Patatrack pixel tracking
– Reconstruct pixel-based tracks and vertices on the GPU
– Leverage existing support in CMSSW for threads and on-demand reconstruction

• Also explore adding support for heterogeneous computing into the framework
– Minimize data transfers

• Start data processing on GPU
from RAW data of pixel detector

• Main goal: deployment in
CMS HLT for Run 3
– Gain experience on

heterogeneous HLT farm
for HL-LHC

Introduction

2



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Patatrack pixel tracking code extracted from CMSSW into a standalone code
– https://github.com/cms-patatrack/pixeltrack-standalone/
– Infrastructure specifically designed for experimentation of different frameworks
– In retrospect this was an excellent choice by making the exploration much easier

• Initial porting of the original CUDA program to Kokkos is complete
– Physics (clusters, hits, tracks, vertices) is validated against the original CUDA program
– Able to run on CPU and GPU

• Single build with a run-time choice of what code to run

• Now working on performance improvements
– Kokkos port was expected to be slower “by construction”

Summary of year 1

3

https://github.com/cms-patatrack/pixeltrack-standalone/


11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• So far 71 merged Pull Requests,  ~7 months of wall clock time
– By myself, Yunsong, Taylor, Alexei

• ~13kSLOC of code in the Kokkos port
– Much of that is copy-paste from original CUDA program

Scale of the porting effort

4

https://github.com/cms-patatrack/pixeltrack-standalone/pulls?q=is%3Apr+is%3Aclosed+label%3Akokkos


11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Copy the raw data to the GPU (~250 kB/event)
• Run multiple kernels (39) to perform the various steps

– Decode the raw data
– Cluster the pixel hits
– Form hit doublets
– Form hit ntuplets (triplets and quadruplets) with a Cellular

Automaton algorithm
– Clean up duplicates
– Vertexing

• Copy only the final results back to the host
– Optimized SoA format
– ~4 MB/event for tracks, ~90 kB/event for vertices
– Convert to legacy format if requested

Reminder of the Patatrack program

5



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• The program is in the limit of “many small GPU operations”
– All overheads matter
– At the peak throughput the CUDA runtime mutex is hammered at O(100 kHz)

• Key elements for performance
– Process multiple events concurrently by using CUDA streams
– Asynchronous execution: CPU does other work while the GPU is processing

• “Continuation passing” with callback functions instead of blocking synchronization calls

• Caching allocator (“memory pool”) to amortize the cost of CUDA memory 
allocation functions

• More information
– arXiv:2008.13461 for the algorithms
– arXiv:2004.04334 for the framework side

Reminder of the Patatrack program (2)

6

https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2004.04334


11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Flexible GNU Make-based build system
• Simple framework

– Uses TBB tasks similarly to CMSSW (event loop, asynchronous external work)

• I/O is ignored
– Data of all 1000 input events is fully read into memory before the event loop

• From CMS Open Data of TTbar + pileup-50 simulation
• When processing more than 1000 events, the events in the set are recycled

– No output

• Performance is measured as the event processing throughput over the event loop
– Simple to measure, exactly the quantity that matters in the end
– Incorporates all overheads that would be there in an event loop of an experiment 

framework

• https://github.com/cms-patatrack/pixeltrack-standalone/ 

Standalone program

7

https://github.com/cms-patatrack/pixeltrack-standalone/


11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Kokkos requires a runtime library
• Available backends are chosen at the build configuration time of the library

– Can have one host serial backend
– Can have one host parallel backend: OpenMP, pthreads

• Chris Jones has a private prototype of TBB backend
– Can have one device parallel backend: CUDA, HIP, (HPX), (SYCL in develop)

• Supporting multiple device parallel backends requires a separate runtime library 
for each backend
– In fact worse, need a separate library for each CUDA major architecture: Pascal (6.x), 

Volta/Turing (7.x), Ampere (8.x)
– Same goes for vector architectures on CPU side if one wants to make use of Kokkos’ 

optimizations on those

• One host backend is always needed

Impact on building 

8



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• If CUDA backend is enabled in the runtime library, all source files including any(?) 
Kokkos header must be compiled with CUDA-capable compiler (nvcc or clang)
– Even if the source file would not use any CUDA functionality
– I assume the same holds for HIP and SYCL as well

• nvcc is unable to link device code from shared objects, consequences:
– Kokkos runtime library must be built as a static library
– Can not use relocatable device code

• A source file must contain (directly or #include) all device code called from that source file
– I.e. can not link to device code in another object file

• Can not use CUDA dynamic parallelism

Impact on building (2)

9



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Set of available backends chosen at build configuration time of Kokkos runtime
• Actual backend to be used is chosen at compile time

– By default the “most advanced” backend is used (CUDA > OpenMP > Serial)
– Can choose explicitly with a template argument

• In Patatrack Kokkos port, separate versions of a “framework module” are compiled 
for all available backends
– The versions to be used are chosen at run time (command line)
– With a Kokkos runtime built for Serial+CUDA, it is possible to run the Serial-only versions 

on a machine without GPU
• Requires some care, also on the algorithm implementation side

Backend choice

10



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• High-level API: parallel_for, parallel_reduce, parallel_scan
– Can be nested (with some restrictions)

• Details of the iteration and operations are controlled with a policy
– RangePolicy: 1-dimensional range, all elements are independent
– MDRangePolicy: 1-6 dimensional range, all elements are independent
– TeamPolicy: thread teams / hierarchical parallelism (more on next slide)

• Corresponds to CUDA’s grid of blocks of threads

• RangePolicy and MDRangePolicy are simple to use when hierarchical parallelism 
is not needed
– Developer does not have to think about distribution of work to threads

Writing algorithms

11



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• In CUDA one has a grid of blocks of threads
– Threads of a block can synchronize (e.g. barrier) and have common scratch space 

(shared memory)
– Blocks themselves are independent (no synchronization available)

• Kokkos supports this model via thread teams (“league of teams of threads”)
– Barrier synchronization, scratch space
– Can do reduction over the threads of a team

• Number of threads in a team is not exactly portable
– Serial backend must have exactly 1, pthread backend can use at most the number of 

CPU threads, CUDA backend has the same limits as CUDA itself (128/256 are typical)
– Can be mostly mitigated by letting Kokkos decide with Kokkos::AUTO()

Hierarchical parallelism

12



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Kokkos::View<T> is an N-dimensional array of type T
– Reference-counted, works similar to std::shared_ptr
– Can be passed to device functions by value (recommended pattern)
– Layout can be controlled with template parameters

• Different default layout for host and device backends
• Possibility for custom layouts

– Template parameters to enable optimizations based on intent
• E.g. very easy to use CUDA texture access for random-access constant data

– Could be useful for calibration data, not tested yet though

• Generic way to construct a View on the optimal host memory space for a View of 
device memory space
– CUDA device memory -> CUDA pinned host memory
– Host memory -> host memory (shortcut, no actual copy)

Data structures

13



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• By default the View initializes the content
– On GPU memory runs a kernel with the default constructor
– Can be very expensive if initialization is not needed (first access is write)

• Out of the box View does not use memory pool
• Patatrack code has not much use for arrays of > 1 dimension

– Track parameters and covariance matrix is one exception
– We have not tried (yet?) change the current approach based on Eigen

• Works about as well as any other smart pointer
– Also as painful for constructing Structures-of-Arrays

Data structures (2)

14



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• The operations (parallel_X(), deep_copy()) should be thought to be 
asynchronous wrt. the calling host thread
– Details depend on the backends

• Must synchronize explicitly in a way that blocks the host thread
– I.e. no direct support for continuation passing

• There is some support for fine-grained task parallelism
– Internally does provide continuation passing style chaining of tasks
– But the host thread must do a blocking wait in the end
– So far we have not tested Kokkos tasking

Asynchronous execution

15



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• The simple framework implements concurrent events with separate “lanes” that 
run the algorithms for their events
– Similar to “streams” in CMSSW

• In CUDA concurrent kernels require the use of CUDA streams
• Kokkos does not provide (yet) a portable mechanism for concurrent kernels, but 

allows the use of CUDA streams
– The concept has been tested, but not at the scale of the full application

• No direct support for continuation passing
– On the other hand using CUDA callbacks does not add much non-portability on top of the 

stream management

• Not tested much yet
– Simple tests work for both Serial and CUDA backends
– Very first attempt with Serial backend in the full application lead to assertion failures

Concurrent events

16



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

(Unfair) performance comparison

17

Test Throughput

Original 
CUDA 
program

10 concurrent events (GPU 
saturation point

1700 events/s

1 concurrent event 760 events/s

1 concurrent event, 
caching allocator disabled

140 events/s

Kokkos 
port

CUDA backend 92 events/s

Threads backend
(peak at 7 threads)

26 events/s

Serial backend 13 events/s

• Processing for ~5 min wall 
clock time
– Tracks and vertices not 

transferred back to host

• All tests run on the same Cori 
GPU node
– Exclusive access
– Pinned to 1 NUMA node
– Node otherwise empty

• Kokkos uses 1 concurrent 
event
– Serial uses 1 CPU thread

• Throughput from one execution



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Kokkos port runs more kernels than the original CUDA program
– Kokkos does not have team-wide parallel_scan() yet

• Currently calling a parallel_scan() for the entire league and post-processing the result to 
mimic team-wide parallel_scan()

– Kokkos does not have a sort function callable from device

• By default Kokkos::View does not use any memory pool
– cudaMalloc()+cudaFree() are expensive (and synchronize)

• Only limited use of asynchronous execution
• No event-level concurrency

Reasons for poor performance

18



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Nice high-level API
– Some functionality missing that reduces performance

• Team-wide prefix scan
• Sort that could be called from device code

• Works nicely for a code that is fully compiled for a specific machine
• Works less nicely for a code that tries to “compile once, run everywhere”

– Need one Kokkos runtime library for each pair of (CPU vector architecture, GPU 
architecture)

• Kokkos::View does not seem very useful for Structure-of-Arrays
– Use for N-dimensional arrays has not been tested

• Kokkos::View gives easy way to use texture caches (not tested though)

Summary of our Kokkos experience

19



11/05/20 Matti Kortelainen | Status of Patatrack pixel tracking use case

• Continue to understand finer details of Kokkos
– Understand better the performance difference wrt. CUDA (i.e. improve)
– Try out HIP and SYCL backends
– Try out some not-yet-tested features

• Concurrent execution, tasks

• Update reference CUDA implementation to latest, Kokkos to 3.2, CUDA to 11
• Eventually move to the next technology

– SYCL(2020)/DPC++(/oneAPI) ?
• Effort has actually started already outside CCE (at CERN)

– In principle can be started concurrently with finishing the Kokkos port

• Priorities can be discussed

Next steps

20


