HEP-CCE: Fine-grained I/O and Storage (IOS) Activities Year 1

Peter van Gemmeren, Rob Ross
People Involved
(sorry if we missed you!)

• High Energy Physics
 • Doug Benjamin (ANL)
 • Paolo Calafiura (LBL)
 • Philippe Canal (FNAL)
 • Oliver Gutsche (FNAL)
 • Salman Habib (ANL)
 • Kenneth Herner (FNAL)
 • Patrick Gartung (FNAL)
 • Lisa Goodenough (FNAL)
 • Christopher Jones (FNAL)
 • Liz Sexton Kennedy (FNAL)
 • Kyle Knoepfel (FNAL)
 • Peter Van Gemmeren (ANL)

• (More) High Energy Physics
 • Tammy Walton (FNAL)
 • Torre Wenaus (BNL)

• Computer Science
 • Suren Byna (LBL)
 • Matthieu Dorier (ANL)
 • Rob Latham (ANL)
 • Rob Ross (ANL)
 • Saba Sehrish (FNAL)
 • Shane Snyder (ANL)
 • John Wu (LBL)
Statement of the Challenge

• Next-generation HEP experiments will have an order of magnitude increase in data rates and will face increasing data complexity and data volume.
 • New capabilities and methods for data processing, simulations, and data management are needed.
• ASCR HPC resources are expected to be key in addressing several of these issues.
• HEP software and workflows need to be developed to efficiently use these resources.
Goals of IOS

- The project is concentrating effort on:
 - Efficient serialization/de-serialization of data representations under parallel I/O models
 - both single node and multi-node access patterns
 - Development of persistable data representations that can be tuned for access on HPC storage systems and optimized for HEP I/O patterns.
 - may involve accelerator technologies
 - can benefit from Write-Once/Read-Many access models
 - Optimization of reads of partial, partitioned or sub-event data blocks from storage which are matched to specific algorithm consumption requirement
 - Optimization of runtime memory mapping of data to exploit batched, vectorized, and data parallel operations and transforms on columnar data.
Year 1 Plans and Accomplishments

• **1st quarter**: Document I/O patterns and event data models (EDMs)
 • Short presentations on background topics with Q&A

• **2nd quarter**: Performance of HEP experiment benchmarks on Grid resources
 • ROOT: Optimizable for HPC, xCache, Instrument ROOT I/O patterns.
 • ATLAS: EventService Simulation (fined-grained (event-wise) processing).

• **3rd quarter**: Produce benchmarks either by packaging experiments workflows or by building synthetic benchmarks

• **4th quarter**: Decide on optimization targets for memory infrastructures for phase 2.
 • For example explicit synchronous/asynchronous CPU-GPU data transfers vs unified GPU/CPU memory architectures
Ongoing Activities: Three Deeper Dives

- **Darshan for ROOT I/O in HEP workflows on HPC**
 - ROOT I/O is central to all HEP experiments. Measurements of its performance on HPC using tools like Darshan, could give valuable insights for possible improvements.
 - Shane Snyder presenting.

- **Investigate HDF5 as intermediate event storage for HPC processing**
 - In some workflows, such as the ATLAS EventService, temporary data is written to ROOT files. Moving this data to a parallel file format such as HDF5 could be beneficial.
 - Saba Sehrish presenting.

- **Testing framework for understanding scalability and performance of HEP output methods**
 - An ability to simulate HEP output of specific data products (e.g., RECO, AOD, miniAOD) in different scenarios prepares us for deeper analysis of intermediate data storage options.
 - Chris Jones presenting.