

650 MHz Cryomodule Design Activity In CMEL

Abhishek Jain , Hemant Patel A. Laxminarayanan, Rupul Ghosh, S. Gilankar, Prashant Khare RRCAT ,Indore

Part A Rapid removal and Coupling of Auxiliary system for Cavity Tuning

Concept -1 presented in last Web-X

- Presented the Tuner modification Based on Original blade Tuner configuration (where the motor is parallel to cavity axis
- In this concept, the problem is faced in changing the direction of motion by 90°
- This would require a complex gearbox mechanism with possibility of increased backlash

Tuner Arrangement as discussed probably is now perpendicular to the axis of cavity and Tangential to helium vessel

- Concept 2A : Primary motor located inside thermal shields and mounted on tuner rings
- Concept 2B : Primary motor located outside thermal shield and supported on vacuum vessel

Concept – 2A Arrangement proposed for Auxiliary System (concept under development)

Mounting of motor on tuner outer ring will restrict there movement so presently searching for suitable place

Reverse direction of Tuner Motor

Coupling of auxiliary tuner motor in case of primary motor failure

- Need to clock the motor by 180° on the other side of cavity
- Primary motor mounting support need to be shifted to side rings or more appropriate place where it does not restrict tuner motion
- Double sided threads on tuner screw
- Inverted cup type support from Vacuum Vessel
- Thermal intercept with bearing support at 80 K shield
- G-11 shaft for connecting auxiliary motor
- A decoupling mechanism to disconnect the primary motor (still looking for Ideas)

G-11 shaft detailing

- Allowable shear strength of G-11
 = 250 MPa
- Dia 70mm & wall thk 6mm
- With FOS = 4, Max torque it can take is 2100 Nm
- Limitation is from Shrink fit joint
- Shrink fit joint can take max torque of 630 Nm
- Torque required is 150 Nm (well within range)
- Heat load from Vacuum vessel to 80 K shield = 0.5 W

Calculation done by: Rupul Ghose

Part B Cavity Support Structure (For new cavity support pipe of dia 200 mm)

Simplified Model for Analytical Calculation

Deflection by Superposition method:

$$\delta_{freeend} = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{selfweight}$$

Maximum deflection at free end = 0.275 mm

Spread Sheet for Analytical Solution

130) - (•	f.x.																	_
A	В	С	D	E	F	G	н	l.	J	К	L	М	N	0	Р	Q	R	S	т	
1							Total length o	of HGR Pipe			1	2 m								
2 HGR Pip	e OD		219	mm			Distance bety	veen conseq	utive post		4.17	5 m	P1	750	D N					
3 HGR Pipe Thickness		8.17 mm				Length of propped Cantilev		ver Beam,L		5.72 m		P2	750	750 N						
4 HGR Pip	e ID		202.66	mm			Distance of re	dundant sup	port , a		4.17	5 m	P3	750	D N					
5 HGR Pipe Cross Secn. Area			5411.33397 mm2		0.005411334 m2		Distance of F	Distance of Force P1, l1			5.7212 m		P4	750 N						
6 HGR Pip	e Moment of In	ertia,I	30111393.44	mm4	3.01114E-05	5 m4	Distance of F	orce P2 , l2			4.971	2 m	P5	750	D N					
7 HGR Pip	e Material Den	sity	7800	kg/m3			Distance of F	orce P3, I3			4.394	5 m	P6	750	D N					
8 UDL. w		· ·	414.0644527	N/m			Distance of F	orce P4, I4			3.6444	5 m	P7	750	D N					
9 Materia	l Elastic Modulu	is.E	200	GPa	2E+1	L Pa	Distance of F	orce P5. I5			3.0677	5 m	P8	750	D N					
10							Distance of F	orce P6. l6			2.3177	5 m	P9	750	D N					
11 Flexura	Rigidity.El		6022278.689	Nm2			Distance of F	orce P7. 17			1.7410	5 m								
12							Distance of F	arce P8, 18			0.9910	5 m								
13							Distance of F	orce P9 19			0.27	5 m								
14							Distance of the	510215,15			0.27									
15	2		D a ²		$P_{a}a^{2}$		$P_2 a^2$		Pala ²		$P_{\rm s} l_{\rm s}^2$		$P_{6}l_{6}^{2}$		$P_7 l_7^2$.					
16 K0 =	$\frac{wa}{24}(a^2+6l^2-$	4la)	$K1 = \frac{P_1 a^2}{6} (31)$	1 – a) l	$K2 = \frac{12\alpha}{6}(31)$	2 – a)	$K3 = \frac{-3}{6}(31)$	₃ — a) K4	$=\frac{-4-4}{6}(3)$	a — l ₄) K5 -	$=\frac{1}{6}(3a)$	– 1 ₅) K	$6 = \frac{3}{6}(3a)$	– l ₆) K7	$= \frac{7}{6}$ (3)	$3a - l_7)$				
17 -	24		6 .	• •	0		0		0		0				-					
$\frac{1}{18}$ K8 = $\frac{P_{e}}{18}$	$\frac{18^{-1}}{(3a - l_{g})}$	K9 = -	$\frac{2919^{-1}}{3a - 1a}$		R =	$= (K_0 + K)$	$1 + K_2 + K_3 + K_3$	$K_4 + K_5 + K_4$	$+ K_7 + K_8$	$+K_{9})\frac{3}{3}$										
10	6		6				1 2 0		, 0	" as										
19																				
20	25550 02560		1/1	20200 02600		1/2	22207 5627		K2	10007.07010		14.4	14742.05060							
21 KU	35550.82508	•	K1	28299.92098		KZ	23397.3037		K3	19027.97310		K4	14743.95008							
22	11105 07004		145	6054 400700			4000 110000		K 0	1416 050004		140	115 0007010							
23 K5	11125.37894	•	ко	6854.123798		K7	4086.112933		ка	1416.052024		K9	115.8007813							
24		1		4 45 94 7 7997																
25 Sum of	all constants K0	to K9		145217.7087																
26 Reaction	n Force at Suppo	ort, R		5986.478061	N							2		D 12		2		-		
27	w14 D	2	P. 12		$P_2 l_2^2$		P ₂ 1 ²	P.1	2	P _r 1 ²	v	$6 = \frac{P_6 l_6^2}{(3)}$	1-1c) y7 :	$=\frac{P_7 I_7^2}{(31-1)}$	7) v8 =	$\frac{P_8 l_8^2}{(31 - 1)^2}$	P_{gl}	$\frac{3}{9}(31 - 1_{-})$		
28 y0 =	$\frac{WI}{8EI}$ $yR = \frac{R}{6}$	а ЕІ ⁽³¹ — а	a) $y1 = \frac{11}{6EI}($	(31 − l ₁) y	$2 = \frac{122}{6EI}(31 - $	l ₂) y3	$3 = \frac{13 \cdot 3}{6EI}(31 - 1_3)$	$y_4 = \frac{r_4 r_4}{6E}$	$\frac{4}{1}(31 - 1_4)$	$y5 = \frac{155}{6EI}(3)$	1 – 1 ₅)	6EI (6/ -	6E1 *	,, <u>,</u>	6EI		I (01 19)		
30 y0 to y9	are deflection a	at free en	nd due to respec	tive forces					1											
31									T											
32 y0	0.009200284	m	yR	-0.03749853	m	y1	0.007771483	m	y2	0.006252196	m	у3	0.005116888	m	y4	0.00372	5 m			
33																				
34 y5	0.002752767	m	уб	0.001654939	m	у7	0.000970122	m	y8	0.000329626	m									
35																				
36 Deflecti	ion at Free End		0.000275813	m	0.2758133	7 mm dov	vnward													
37																				
38																				
39																				
40																				
41																				
42																				
43																				
44																				
45																				
46																				
47																				-
14 4 F FI 5	Sheet1 Sheet2	2 📈 Sheet	3 / 💱 /											I 4 🛌					Ш	

: Calculation by Rupul Ghosh

FEM Formulation

ANS

JUL 19 2011 10:48:58

¹/₄ th Geometrical Model

Meshed Model

- Material: SS 304
- A 20 nodes solid element is taken for FEM formulation
- **Boundary Conditions:**
 - Cavity Weight 0f 150 kg is taken –(Is weight of 150 Kg adequate??)
 - Center support post Fixed post
 - End support post-Sliding post

Cambered pipe Analysis

MHz Cryomodule

19 July 2011

- We want to study how much will the titanium pads move when-
 - Cool down take place
 - (thereby causing shift for the cavity as in straight pipe some shift is there)
 - How is it different from straight pipe and 300 mm dia support pipe

Thank you