Disappearing tracks at the muon collider

EF09 BSM-General meeting - 30/10/2020

R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, F. Meloni, R. Simoniello, J. Zurita

Targets of the study

Electroweak Multiplets can appear in several BSM models:

• WIMP Dark Matter, FIMP DM, Seesaw Type-III, (g-2) muon, etc.

WIMP DM: Naturally small mass splitting between the components of the multiplet (from radiative corrections).

LLP signatures:

- Displaced vertices
- Disappearing tracks
- Kinked tracks

We want to study the reach of a possible high-energy muon collider.

Overall strategy

- Focus on 10 TeV collisions first, repeat for 3 TeV and 14 TeV later
- Use Madgraph+pythia for the signal generation/shower
- Study reconstruction effects with full simulation
- Implement smearing functions in custom Delphes module to get "reconstructed" charginos, together with other reco objects (photon, missing energy)
- Optimise the final event selection
- Evaluate the sensitivity in the mass vs lifetime plane, for different multiplet hypotheses

The tricky bits

Detector signature: tracks (tracklets) that disappear

Full simulation needed to properly assess:

- tracklet reconstruction efficiency vs p_T, η(Θ), decay position in the detector
- effect of disappearing condition (veto on tracker layer)
- tracklet momentum resolution
- background tracks (combinatorial fakes and BIB)

The next slides show some *very preliminary/work-in-progress* results towards achieving this.

Signal generation and simulation

Focused on wino C1C1 production

Model: MSSM_SLHA2

• aMC@NLO 2.7.3 + Pythia 8.2

 $\label{eq:MG5_aMC} MG5_aMC > generate mu+ mu- > vm vm~ x1+ x1- \\ MG5_aMC > add process mu+ mu- > x1+ x1- \\ MG5_aMC > add process mu+ mu- > x1+ x1- mu+ mu- \\ \end{tabular}$

• Need special ISR plugin to get ISR photons

Simulation in dd4hep

- Good support for BSM particles
- GEANT physics list automatically generated from list of "extra particles"
- Lifetimes are arbitrary (specified in mm)
 - C1 lifetime set to 100 mm

Block MASS		# Scalar and gaugin	no	mass spectrum
ŧ	PDG code	mass		particle
	5	4.8000000E+00	#	b-quark pole ma
	6	1.72500000E+02	#	t-quark pole ma
	15	1.77682000E+00	#	tau pole mass
	23	9.11876000E+01	#	Z pole mass (ne
	24	8.04229965E+01	#	W^+
	25	1.17354164E+02	#	h^0
	35	6.99664014E+03	#	H^0
	36	6.95080322E+03	#	A^0
	37	6.99698096E+03	#	H^+
	1000001	7.43424219E+03	#	dnl
	1000002	7.43383691E+03	#	upl
	1000003	7.43424219E+03	#	stl
	1000004	7.43383691E+03	#	chl
	1000005	6.38580225E+03	#	b1
	1000006	5.10177637E+03	#	t1
	1000011	4.83639551E+03	#	el-
	1000012	4.83417090E+03	#	nuel
	1000013	4.83639551E+03	#	mul-
	1000014	4.83417090E+03	#	numl
	1000015	4.78479004E+03	#	tau1
	1000016	4.82647363E+03	#	nutl
	1000021	6.08901953E+03	#	glss
	1000022	8.99637451E+02	#	z1ss
	1000023	2.93977783E+03	#	z2ss
	1000024	8.99811523E+02	#	w1ss
	1000025	-4.83659033E+03	#	z3ss
	1000035	4.83768994E+03	#	z4ss
	1000037	4.84269434E+03	#	w2ss
	2000001	7.51731982E+03	#	dnr
	2000002	7.47251123E+03	#	upr
	2000003	7.51731982E+03	#	str
	2000004	7.47251123E+03	#	chr
	2000005	7.46611328E+03	#	b2
	2000006	6.42913818E+03	#	t2
	2000011	4.79959424E+03	#	er-
	2000013	4.79959424E+03	#	mur-
	2000015	4.82940039E+03	#	tau2

Some (ugly) truth-level distributions

For 900 GeV charginos

Example event display No Beam Induced Backgrounds

Example event display

Full Beam Induced Backgrounds

Same event as before.

The red/brown dots
represent simulated detector
hits from the BIB

Simulation available only for $\sqrt{s=1.5}$ TeV (use as pessimistic baseline)

- low-energy photons, electrons/positrons (~1-10 MeV)
- neutrons (~100 MeV)
- The large multiplicity of hits (several millions) makes tracking extremely challenging

BIB rejection

With timing

Exploit particle arrival times to reduce BIB

- Beware for low-beta particles!
- Timing cuts will kill hits from the displaced pion!

For now, assume another hard object in the event (e.g. ISR photons) can be timed

BIB rejection

With geometry

The current pattern recognition algorithms don't exploit in any way the double layer layout in the vertex detector.

• Can filter input hits based on whether there is another hit in the closeby layer with small $\Delta \Theta$.

 $\Delta \Theta$ with closest hit in nearmost layer

BIB rejection

Summary of selections

Timing:

• -0.15 ns < t - **r**/c < 0.15 ns

Geometry:

- Reject all hits for which the closest hit in $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \Theta^2)}$ has $\Delta \Theta > 0.02$
- Could add a cut on Δφ too

To reduce combinatorics and speed up tracking, the hits are split in subcollections in theta with this binning: [0, 30, 50, 70, 90, 110, 130, 150, 180]

• Only (50, 70, 90, 110, 130) considered in the following

Reconstruction efficiencies

No BIB, but after BIB rejection cuts

Efficiencies evaluated with truth matching to C1 particles.

- Reconstructable tracks are defined as tracks from C1 with at least 4 hits.
- Evaluated vs the C1 decay radius R and vs (Θ, R)
 - Bin boundaries in R defined by position of tracking layers

Effect of disappearing condition

No BIB, but after BIB rejection cuts

Acceptance * efficiency evaluated with truth matching to C1 particles.

- Reconstructable tracks are defined as tracks from C1 with at least 4 hits.
- Disappearing condition veto on last layer of Vertex detector (10.2 cm)
- Evaluated vs the C1 decay radius R and vs (Θ, R)
 - Bin boundaries in R defined by position of tracking layers
 - Plan to use this map to parameterise efficiencies

Disappearing tracks quantities

Background estimation plans

Consider background from material interactions negligible (as in LHC searches).

Focus on Z>vv, with tracklets from BIB

- Plots from Delphes using muon collider <u>card</u> (v0) by M.Selvaggi
- Overlay to each event (background and signal) a set of BIB tracks extracted from full simulation

Next: optimise selection

Add momentum smearing for signal tracklets

Re-run efficiency study increasing detector acceptance

- Aim to cover a η region similar to LHC searches
- Move disappearing condition to first layer of Inner tracker

Include BIB at 3 TeV

Interpret expected results

Repeat exercise at $\sqrt{s} = 3$ TeV and $\sqrt{s} = 14$ TeV, possibly for a few integrated luminosity assumptions

Thank you!

Reconstruction efficiencies

No BIB, but after BIB rejection cuts

--- n_reconstructable_C1 = 3500 --- n_reconstructed_C1 = 3251 --- efficiency_C1 = 0.9288571428571428

Efficiencies evaluated with truth matching to C1 particles.

- Reconstructable tracks are defined as tracks from C1 with at least 4 hits.
- Considering we are neglecting the hits in the endcaps, relatively ok

The tracking system

Vertex Detector (VXD)

- 4 double-sensor barrel layers:
 - at r = 3.1, 5.1, 7.4, 10.2 cm;
 - 50-µm thick Si sensors;
- 4+4 double-sensor disks:
 - at |∆z| = 8.0, 12.0, 20.0, 28.0 cm;
 - 50-µm thick Si sensors.
- Inner Tracker (IT)
 - 3 barrel layers (100-µm thick):
 - at r = 12.7, 34.0, 55,4 cm;
 - 7+7 disks (100-µm thick):
 - At |∆z| = 52.4, 80.8, 109.3, 137.7, 166.1, 194.6, 219.0 cm;
- Outer Tracker (OT)
 - 3 barrel layers (100-µm thick):
 - ✤ at r = 81.9, 115.3, 148.6
 - 4+4 disks (100-µm thick):
 - At |∆z| = 131, 161.7, 188.3, 219 cm.

Machine parameters

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / Ε	%	0.1	0.1	0.1
σ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63