NEW PHYSICS SEARCHES AT A MUON COLLIDER

Hannsjörg Weber (Fermilab)

Douglas Berry¹, Kevin Black², Anadi Canepa¹, Swapan Chattopadhyay^{1,3}, Matteo Cremonesi¹, Sridhara Dasu², Dmitri Denisov⁴, Karri Di Petrillo¹, Melissa Franklin⁵, Zoltan Gecse¹, Allison Hall¹, Ulrich Heintz⁶, Christian Herwig¹, James Hirschauer¹, Tova Holmes⁷, Andrew Ivanov⁸, Bodhitha Jayatilaka¹, Sergo Jindariani¹, Young-Kee Kim⁹, Jacobo Konigsberg¹⁰, Lawrence Lee⁵, Miaoyuan Liu¹¹, Zhen Liu¹², Chang-Seong Moon¹³, Meenakshi Narain⁶, Scarlet Norberg¹⁴, Isobel Ojalvo¹⁵, Katherine Pachal¹⁶, Simone Pagan Griso¹⁷, Kevin Pedro¹, Alexx Perloff¹⁸, Elodie Resseguie¹⁷, Stefan Spanier⁷, Maximilian Swiatlowski¹⁹, Ann Miao Wang⁵, Lian-Tao Wang⁹, Xing Wang²⁰, Hannsjörg Weber^{1*}, David Yu⁶

¹Fermi National Accelerator Laboratory, ²University of Wisconsin, Madison, ³Northern Illinois University, ⁴Brookhaven National Laboratory, ⁵Harvard University, ⁶Brown University, ⁷University of Tennessee, Knoxville, ⁸Kansas State University, ⁹University of Chicago, ¹⁰University of Florida, ¹¹Purdue University, ¹²University of Maryland, ¹³Kyungpook National University, ¹⁴University of Puerto Rico, Mayagüez, ¹⁵Princeton University, ¹⁶Duke University, ¹⁷Lawrence Berkeley National Laboratory, ¹⁸University of Colorado, Boulder, ¹⁹TRIUMF ²⁰University of California, San Diego Also close collaboration with Italian/ European colleagues who are working on the muon collider.

Executive Summary

- In LoI #226 we propose to study the new physics sensitivity at a muon collider.
 - First, identify and overcome the challenges in the reconstruction (see also LoI #234).
 - Use these result to study new physics signatures. We made 4 concrete proposals:
 - 1. Dark matter and resonances: model-independent with ISR, model-dependent with mediator (such has a heavy boson). E.g. if coupling happens through vector bosons, muon colliders might yield highest sensitivity.
 - 2. Electroweakinos: At high \sqrt{s} , the EWKino cross section rises strongly compared to the SM background \rightarrow possibly high sensitivity. One question: can we tag soft tracks when there is beam-induced backgrounds (BIBs).
 - 2. Another avenue could be looking for RPV. Similar argument as above: Cross section not that much smaller as those of background, unlike for a pp machine.
 - 3. Long-lived particles: This might be very challenging in the presence of the BIB.
- Also check out LoI #177, utilizing the muon collider for standard model physics.
 - The authors of these three LoIs work together. We also work with our European colleagues.

Why muon collider?

• Muons are heavy: Can build small footprint collider for multi-TeV collisions.

• With further advances could build a 6 TeV muon collider of the size of the Tevatron.

- Muons are heavy: Can build small footprint collider for multi-TeV collisions.
- Muons are fundamental particles i.e. collisions take advantage of full c.o.m. energy of the beam.

- Our LoI calls for generic exploration of the new physics parameter space, but we named three topics that are of interest to the signees:
 - Resonances and Dark matter: e.g. $H/Z' \rightarrow invisible + ISR$ (photon) or $H/Z' \rightarrow XX$ ($X = \ell$, V, or h).
 - Resonance search can be done with a \sqrt{s} scan.

- Our LoI calls for generic exploration of the new physics parameter space, but we named three topics that are of interest to the signees:
 - Resonances and Dark matter: e.g. $H/Z' \rightarrow invisible + ISR$ (photon) or $H/Z' \rightarrow XX$ ($X = \ell$, V, or h).
 - Model-independent search by selecting on an ISR object, e.g. a photon.

$$m_{\text{missing}}^2 = (p_{\mu^+}^{\text{in}} + p_{\mu^-}^{\text{in}} - p_{\gamma}^{\text{out}})^2$$

- Our LoI calls for generic exploration of the new physics parameter space, but we named three topics that are of interest to the signees:
 - Electroweak Supersymmetry.
 - Particular strong at high energy due to large VBF cross section.
 - Due to low (hard scatter) background should be able to select soft decay products (careful of BIB, see later).

- Our LoI calls for generic exploration of the new physics parameter space, but we named three topics that are of interest to the signees:
 - Long-lived particle searches.
 - Except for HSCP, extremely difficult as LLP searches rely on displacements, different timing, or other non-conventional signatures.
 - But those, also appear for the BIB (see later) so need to see how we can discriminate BIB vs. LLPs.

- Muons are unstable, and decay in-flight.
 - This plot is done with MARS simulation at $\sqrt{s} = 1.5$ TeV.

- Muons are unstable, and decay in-flight.
 - The detector is bombarded by particles.

M. Swiatlowski

- Muons are unstable, and decay in-flight.
 - The detector is bombarded by particles.

M. Swiatlowski

- Muons are unstable, and decay in-flight.
 - The detector is bombarded by particles.
 - Need all experimental handles available to us:
 - Detector with in-built absorber against the beam-induced background (BIB).
 - BIB are not in-time.
 - BIB is extremely soft.

• BIB particles fly parallel to the beam.

- Muons are unstable, and decay in-flight.
 - The detector is bombarded by particles.
 - Need all experimental handles available to us:
 - Detector with in-built absorber against the beam-induced background (BIB).
 - BIB are not in-time.
 - BIB is extremely soft.
 - BIB particles fly parallel to the beam.
 - But still, some work ahead of us!

Challenges can be overcome

• Our European colleagues used the full simulation to do a H(bb) measurement at $\sqrt{s} = 1.5$ TeV.

 $\mu^+\mu^- \to H\nu\bar{\nu} \to b\bar{b}\nu\bar{\nu}$ + beam-induced background fully simulated

	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$ [%]
Muon Collider	1.5	0.5	1.9
	3.0	1.3	1.0
	10	8.0	0.91

Looking ahead

- The first delphes card has been created:
 - https://github.com/delphes/delphes/blob/master/cards/delphes card MuonColliderDet.tcl
- But we are working on studies to improve the reconstruction and validate and improve that detector card with full simulation.
- As Delphes card was finalized only last week, we have no physics studies to show (yet), but we are starting organizing these studies now.
 - As we are starting physics studies now, if you are interested: it is a great time to join! Just contact me.

Backup

Muon collider experiment

Machine parameter

Center of mass energy \sqrt{s} (TeV)	.126	3	14
Circumference (km)	.3	4.5 (26.7*)	$14 \ (26.7*)$
Interaction regions	1	2	2
Peak luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	0.008	4.4	40
Int. lum. per exp. $(ab^{-1}/year)$	0.001	0.5	3
Time between coll. (μs)	1	0.025	90
Cycle rep. rate (Hz)	1	6(35*)	$4(7^*)$
Energy spread (rms, %)	0.004	0.1	0.1
Bunch length (rms, mm)	63	5	1
IP beam size (μm)	75	3.0	0.6
β^* , amplitude function at IP (mm)	17	5	1
Avg. magnetic field (T)	10(?)	8(5.5*)	10.5(5.5*)
Max. magnetic field (T)	10(?)	12	16
Proton driver beam power (MW)	4	4	1
Total facility AC power (MW)	200	230	290