The importance of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ in flavor physics

Benjamín Grinstein

UCSD

Somehere in the Ethernet, 11 January 2021

The importance of $V_{u b}$ and $V_{c b}$ in physics
Removed flavor from in flavor physics
Removed the modulus

$$
V_{u b} \text { and } V_{c b} \text { are } 3 \text { of the } 18 \text { parameters of the Standard Model }
$$

The importance of $V_{u b}$ and $V_{c b}$ in physics
Removed flavor from in flavor physics
Removed the modulus

$$
V_{u b} \text { and } V_{c b} \text { are } 3 \text { of the } 18 \text { parameters of the Standard Model }
$$

6 quark and 3 lepton masses, 3 gauge couplings, a VEV, a higgs mass, 4 CKM

The importance of $V_{u b}$ and $V_{c b}$ in physics
Removed flavor from in flavor physics
Removed the modulus

$$
V_{u b} \text { and } V_{c b} \text { are } 3 \text { of the } 18 \text { parameters of the Standard Model }
$$

6 quark and 3 lepton masses, 3 gauge couplings, a VEV, a higgs mass, 4 CKM 19 if $\bar{\theta}$)
26 if neutrinos, 3 masses plus 4 (or 5) PMNS
Isn't that important enough? These are fundamental parameters of nature

The importance of $V_{u b}$ and $V_{c b}$ in physics
Removed flavor from in flavor physics
Removed the modulus

$$
V_{u b} \text { and } V_{c b} \text { are } 3 \text { of the } 18 \text { parameters of the Standard Model }
$$

6 quark and 3 lepton masses, 3 gauge couplings, a VEV, a higgs mass, 4 CKM 19 if $\bar{\theta}$)
26 if neutrinos, 3 masses plus 4 (or 5) PMNS

The importance of $V_{u b}$ and $V_{c b}$ in physics

Removed flavor from in flavor physics
Removed the modulus

$$
V_{u b} \text { and } V_{c b} \text { are } 3 \text { of the } 18 \text { parameters of the Standard Model }
$$

6 quark and 3 lepton masses, 3 gauge couplings, a VEV, a higgs mass, 4 CKM 19 if $\bar{\theta}$)
26 if neutrinos, 3 masses plus 4 (or 5) PMNS
Isn't that important enough? These are fundamental parameters of nature

The importance of $V_{u b}$ and $V_{c b}$ in flavor physics

A potpurri
Start with the obvious:

- Lifetimes: B (and B_{s}, B_{c}) and Λ_{b} (and $\Xi_{b}, \Omega_{b}, \ldots$)
- $\operatorname{Br}(u / c)$
- Shape of unitarity triangles
- Squashed triangles \Rightarrow reduced CPV

- Null tests of CPV can sensitively test for NP

$$
B_{s} \rightarrow J / \psi \phi
$$

- Smallness of $\left|V_{u b}\right|,\left|V_{t d}\right|$, then $\left|V_{c b}\right|$, $\left|V_{t s}\right|$ controls shapes
- $\left|V_{t d}\right| \sim\left|V_{u b}\right|,\left|V_{t s}\right| \sim\left|V_{c b}\right|$

tu

$$
\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

"A precise determination of $\left|V_{u b}\right|$ is crucial for improving tests of the standard model (SM) and the sensitivity to new physics in $B^{0}-\bar{B}^{0}$ mixing"
-BLT PRD 90, 094003 (2014)
$h-\sigma$ parametrization of new physics contributions to neutral meson mixing amplitudes

$$
M_{12}=\left(M_{12}\right)_{\mathrm{SM}} \times\left(1+h e^{2 i \sigma}\right)
$$

B_{d} :

B_{s} :

- Ultimate goal: a theory of flavor: Why are there 3 generations? Why hierarchies of masses? Why texture of mixing matrices?
- SM does not explain, it parametrizes; EFT and simplified mediators are no better What would a theory of flavor do?
One of these:
- Differentiate among generations by their very short distance interactions, eg, different representations of gauge group (or charges under Froggatt-Nielsen?)
- Explain generations as excitations of composites (meaning: made of more fundamental stuff, surely tightly bound, rather than the modern meaning made of mixed fields)
- ??

Texture of CKM, i.e. smallness of $\left|V_{u b}\right|,\left|V_{c b}\right|$ is an important guiding principle.
Froggatt-Nielsen-like models tie this hierarchy of CKMs to hierarchy of masses Can be within-reach physics, if required by B -anomalies;
a loop mediator FG model proposed
BG, Pokorski, Ross, JHEP 1812 (2018) 079
To put it backwards: CKM hierarchies suggest FG

Theories with flavor $\rightarrow S U(2) \times U(1)$ eg, $P S^{3}$ model

Slide from:

Bordone et al, Phys.Lett. B779 (2018) 317-323
G. Isidori - New prospects for BSM physics

- The PS^{3} model

$\begin{gathered}\text { Below } \sim 100 \mathrm{TeV} \\ \mathrm{U}(2)^{5} \text { flavor symmetry } \\ \text { (but for link fields) }\end{gathered}$
$\rightarrow \mathrm{W}_{\mathrm{L}}{ }^{\prime}+\mathrm{W}_{\mathrm{R}}{ }^{\prime}[\sim 5-10 \mathrm{TeV}]$
Sub-leading Yukawa terms from higher dim ops:

$$
\begin{gathered}
\left.\mathrm{SU}(3)_{1+2} \times \ldots \ldots\right)_{\mathrm{L}} \times \mathrm{U}(1)^{\prime} \\
\mathrm{SU}_{1,2}(4)_{3} \\
\boldsymbol{\Psi}_{\ell 3}
\end{gathered} \mathrm{H}_{3}
$$

I note that Gauged flavor models also display inverted hierarchy and explain the number of generation, but flavor is parametrized. There should be a way to marry these.

$$
\begin{aligned}
& Y_{\mathrm{U}}=\left[\begin{array}{l|l}
\Delta & \mathrm{V} \\
\hdashline & y_{\mathrm{t}}
\end{array}\right] \\
& \left.\left.\frac{\left\langle\Phi^{\mathrm{R}}{ }_{\ell 3} \Phi^{\mathrm{L}}{ }^{\mathrm{e} 3}\right.}{}\right\rangle\right) \quad \frac{\left\langle\Omega_{\ell 3}\right\rangle}{\left(\Lambda_{23}\right)^{2}} \quad \frac{\Lambda_{23}}{}
\end{aligned}
$$

Exclusive vs Inclusive determination of $\left|V_{c b}\right|$

New Physics?
I suppose we will be discussing this for two days!

- extrapolation matters
- must keep in mind CLN makes assumptions beyond BGL
- IMHO: $V_{u b}$ from inclusive: underestimated systematic uncertainties (not in -pink-picture below

But if persists: New Physics?

- RH currents won't do

$$
\begin{aligned}
\left|V_{c b}\right|_{\text {incl }} & =\left|V_{c b}\right|\left(1+\frac{1}{2} \epsilon^{2}\right) \\
\left|V_{c b}\right|_{D^{*}} & =\left|V_{c b}\right|(1+\epsilon) \\
\left|V_{c b}\right|_{D} & =\left|V_{c b}\right|(1-\epsilon)
\end{aligned}
$$

- SV limit, for any SM-EFT dim-6 operators vs, sJNP47('88)511; BGM, PRD54('96)2081; BG unpub
- More general NP dim-6 ops can't either

Crivellin, Pokorski 1407.1320
However, disagreement colangelo-De Fazio, PRD95(2017)011701

- Tension decreased on $\left|V_{u b}\right|$ Bernlochner, Ligeti, Turczyk, PRD90(2014)094003

Crivellin \& Pokorski:

- If New Physics likely a short distance effect
- Describe by EFT
- Dimension-6 operators can't explain Exc vs Inc:
- Scalar and tensor operators

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F} V_{q b}}{\sqrt{2}}\left[\left(1+c_{L}\right) \bar{\ell}_{L} \gamma^{\mu} \nu_{L} \bar{q}_{L} \gamma_{\mu} b_{L}+c_{R} \bar{\ell}_{L} \gamma^{\mu} \nu_{L} \bar{q}_{R} \gamma_{\mu} b_{R}\right. \\
&\left.+C_{R}^{S} \bar{\ell}_{R} \nu_{L} \bar{q}_{L} \gamma_{\mu} b_{R}+C_{L}^{S} \bar{\ell}_{R} \nu_{L} \bar{q}_{R} \gamma_{\mu} b_{L}+C_{L}^{T} \bar{\ell}_{R} \sigma_{\mu \lambda} \nu_{L} \bar{q}_{R} \sigma^{\mu \lambda} b_{L}+\cdots\right]
\end{aligned}
$$

don't interfere with $S M$ at $q_{\max }^{2}$ (ie, $v \cdot v^{\prime}=1$, ie, zero recoil),

$$
\begin{aligned}
\Delta \Gamma(B \rightarrow D \ell \nu) & \propto\left|C_{L}^{T}\right|^{2}+\left|C_{R}^{S}+C_{L}^{S}\right|^{2}+ \\
\Delta \Gamma\left(B \rightarrow D^{*} \ell \nu\right) & \propto\left|C_{L}^{T}\right|^{2}+\left|C_{R}^{S}-C_{L}^{S}\right|^{2} \\
\Delta \Gamma\left(B \rightarrow X_{c} \ell \nu\right) & \propto\left|C_{L}^{T}\right|^{2}+\left|C_{R}^{S}\right|^{2}+\left|C_{L}^{S}\right|^{2}
\end{aligned}
$$

idem for $b \rightarrow u$, with " + " roughly understood

- Right handed currents as in previous page (CP argue from W_{R} FCNC pheno)
- Turn to dim-7: lepton current coupled to dim 4 hadronic vector

$$
\mathcal{H}_{\text {eff }}=\frac{4 G_{\digamma} V_{q b}}{\sqrt{2}} \bar{\ell}_{L} \gamma^{\mu} \nu_{L}\left[\left(1+c_{L}\right) \bar{q}_{L} \gamma_{\mu} b_{L}+g_{L} \bar{q}_{R} \overleftrightarrow{D}_{\mu} b_{L}+d_{L} i \partial^{\lambda}\left(\bar{q}_{R} \sigma_{\mu \lambda} b_{R}\right)+L \leftrightarrow R\right]
$$

Inclusive: blue; D / π :yellow; D^{*} / ρ :red; $(B \rightarrow \tau \nu$:green)

Colangelo \% De Fazio

- EFT, again, but
- Dimension-6 operators can explain Exc vs Inc:
- Only tensor operator:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F} V_{q b}}{\sqrt{2}}\left[\bar{\ell}_{L} \gamma^{\mu} \nu_{L} \bar{q}_{L} \gamma_{\mu} b_{L}+\epsilon_{T} \bar{\ell}_{R} \sigma_{\mu \lambda} \nu_{L} \bar{q}_{R} \sigma^{\mu \lambda} b_{L}+\cdots\right]
$$

- Fit to Branching Fractions

Conclusion

- Shouldn't NP models fit to slope too? (See, eg, Iguro\& Watanable JHEP08(2020)006)
- Let's have a good workshop!

The End

