Universität Zürich ${ }^{\text {Z2H }}$

Experimental overview and prospects of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$ at LHCb

Snowmass mini-workshop on $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

How are we doing

- LHCb has collected $9 \mathrm{fb}^{-1}$ of data.
- We are currently commissioning the first upgrade.

- Hope to take another $\sim 15 \mathrm{fb}^{-1}$ in run III without the limitations of a hardware trigger.

2028	2029	2030	2031	2032	2033	2034		2035	2036
JFmamjJASon		JIFMAMMJJJAS		JFmamjJJaso			Asond	JF MAMJJJASON LS5	JFMAMJJASSOND

```
\ Shutdown/Technical stop
Mrotons phyics 
```

- Plans for upgrade II strongly supported by european strategy for particle physics.

Semileptonic decays at LHCb

- Do not have direct access to absolute branching fractions.
- Do have access to all b-hadron species.
- Have very large signal yields.
signal yields

Measurements of $\left|\mathrm{V}_{\mathrm{ub}} / /\left|\mathrm{V}_{\mathrm{cb}}\right|\right.$ at LHCb

- Select b->u decay and fit corrected mass.
- Normalise to convenient $b->c$ transition
- same b-hadron
- well known FF

$$
\text { e.g. } \frac{\mathcal{B}\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)_{q^{2}>15 \mathrm{GeV}^{2} / c^{4}}^{\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)_{q^{2}>7 \mathrm{GeV}^{2} / c^{4}}} \frac{1}{}}{\text { and }}
$$

- charm hadron BF
- Convert ratio of branching fractions using LQCD and/or LCSR.

Measurement with $\Lambda_{b}^{0} \rightarrow p \mu \nu$ decays

- Measure ratio:

$$
\frac{\mathcal{B}\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)_{q^{2}>15 \mathrm{GeV}^{2} / c^{4}}}{\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)_{q^{2}>7 \mathrm{GeV}^{2} / c^{4}}}
$$

- Uncertainty split equally between experiment and lattice.
- The former benefits from updates to $\mathcal{B}\left(\Lambda_{c} \rightarrow p K \pi\right)$

$$
\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=0.083 \pm 0.004 \pm 0.004
$$

$$
\left|\mathrm{Vub}_{\mathrm{ub}}\right| / \mathrm{V} \mathrm{cb} \mid \text { from } B_{s}^{0} \rightarrow K^{+} \mu^{-} \nu
$$

- Measure ratio $\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} \nu_{\mu}\right)}$ for new $\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$ measurement with B_{s} decays.
- Do it to two q^{2} regions, to exploit both LCSR and LQCD calculations.

$$
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{-} \mu^{+} \nu_{\mu}\right)_{q^{2}<7}}{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} \nu_{\mu}\right)_{\text {Full }}{ }^{2}} \quad \frac{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{-} \mu^{+} \nu_{\mu}\right)_{q^{2}>7}}{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} \nu_{\mu}\right)_{\mathrm{Full}^{2}}}
$$

- In both cases LQCD is used to determine the denominator, but the uncertainty is sub-dominant.
- D_{s} mesons reconstructed with the $\mathrm{D}_{\mathrm{s}}->K K \pi$ decay mode.

$$
B_{s}^{0} \rightarrow K^{+} \mu^{-} \nu \quad \text { vs } \quad \Lambda_{b}^{0} \rightarrow p \mu \nu
$$

- X_{c} branching fraction uncertainties scaled up the PDG. Important to get more measurements on these.
- Both Belle-II and BES-III very important here.

$$
B_{s}^{0} \rightarrow K^{+} \mu^{-} \nu \text { and } B_{s}^{0} \rightarrow D_{s}^{+} \mu^{-} \nu \text { fits }
$$

- Fit corrected mass $M_{\text {corr }}=\sqrt{M_{\chi_{\mu}}^{2}+p_{\perp}^{2}}+p_{\perp}$

- Shapes for signal reasonably insensitive to form factors.
- Backgrounds more affected. Form factor predictions for e.g. $\mathrm{B}_{\mathrm{s}} \rightarrow>\mathrm{K}^{+()}$) welcome.

Branching fraction results

- Relative efficiency is between two-track and four-track final state.
- Resulting systematic uncertainties due to effects such as tracking and trigger.
- Branching fraction ratios determined to be

$$
\begin{gathered}
\frac{\mathcal{B}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{-} \mu^{+} \nu_{\mu}\right)_{q^{2}<7}}{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} \nu_{\mu}\right)_{\mathrm{Full}}{ }^{2}}=\left(1.66 \pm 0.08(\text { stat }) \pm 0.07(\text { syst }) \pm 0.05\left(\mathrm{D}_{\mathrm{s}}\right)\right) \times 10^{-3} \\
\frac{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{-} \mu^{+} \nu_{\mu}\right)_{q^{2}>7}}{\mathcal{B}\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \mu^{+} \nu_{\mu}\right)_{\mathrm{Full} q^{2}}}=\left(3.25 \pm 0.21(\text { stat })_{-0.17}^{+0.16}(\text { syst }) \pm 0.09\left(\mathrm{D}_{\mathrm{s}}\right)\right) \times 10^{-3}
\end{gathered}
$$

- The branching fractions are less limited by the external input c.f. $\Lambda_{b}{ }^{0}$ case.

$B_{s}{ }^{0}->D_{s}{ }^{+} \mu v$ inputs

- For both $B \rightarrow>K$ measurements, we use lattice $Q C D$ for the $B_{s}{ }^{0}->D_{s}+\mu v$ form factors in full range.
- Use most precise calculation from HPQCD.
- Would be interesting to see a LCSR calculation to be consistent at low q^{2}.

McLean, Davies, Koponen, Lytle [HPQCD]: Phys. Rev. D 101, 074513 (2020)

- Uncertainties that affect efficiencies and fit shapes included as small systematics in the measurements.

High q^{2} inputs

- Many precise $\mathrm{B}_{\mathrm{s}}{ }^{0}->\mathrm{K}$ lattice calculations available [1-4].
- In the end, we chose the one which minimised the uncertainty on $\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$.
- Of course the best now would be to use the recent FLAG average.

We use the MILC/FNAL calculation [4].


```
                                    and get:
| Vub}|/|\mp@subsup{V}{cb}{}|(\mathrm{ high ) = 0.0946 土 0.0030 (stat) + 
```

Large contribution to uncertainty from extrapolation.
[1] Bouchard et al [MILC], Phys. Rev. D 90, 054506 (2014)
[2] Flynn et al [RBC-UKQCD], Phys. Rev. D 91, 074510 (2015)
[3] Monahan et al [HPQCD], Phys. Rev. D 98, 114509 (2018)
[4] Bazanov et al [MILC/Fermilab],Phys. Rev. D 100, 034501 (2019)

Correlated form factor uncertainties

- To treat correlated form factor uncertainties fully in the analysis, need full covariance matrix of simultaneous fit to $\mathrm{B} \rightarrow>\mathrm{X}_{\mathrm{u}}$ and $\mathrm{B} \rightarrow>\mathrm{X}_{\mathrm{c}}$ form factors.

Detmold, Lehner, Meinel, Phys. Rev. D 92, 034503 (2015)

Monahan et al, Phys. Rev. D 98, 114509 (2018)

- This should give the ultimate precision.
- Important if uncertainty from $B->X_{c}$ form factors is significant.

Low q² measurement

- New for $\mathrm{B}_{\mathrm{s}}{ }^{0}->K$ measurement was to also provide a measurement at low q^{2}.

Khodjamirian, Rusov, JHEP08(2017)112

- Measurements do not agree.
- Would be interesting to see a full LQCD fit including both BF measurements.
- Also interesting to see a LCSR $B_{s}{ }^{0}->D_{s}$ calculation.

Medium term prospects

- Need to start making differential measurements as fine as possible.
- In the $\mathrm{B}_{\mathrm{s}}{ }^{0}$ case this would massively improve the sensitivity.
- In the $\Lambda_{b}{ }^{0}$ it would serve as a powerful validation of the lattice calculations $\left(\Lambda_{b}{ }^{0}->\Lambda_{c}\right.$ already shown to be good agreement in our 2017 measurement).

Long term prospects

- Official goal is to determine $\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$ at 1% level with full upgrade II dataset (300fb-1)
- This requires D_{s} and/or Λ_{c} branching fractions to be measured at 1% level.
- Lattice assumed to be at 1% as well, seems doable particularly if we can make very high q^{2} bin.
$\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow>\mathrm{K}$ systematics

Uncertainty	All q^{2}	low q^{2}	high q^{2}
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma\left(m_{\text {corr }}\right)$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^{2} migration	-	2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	${ }_{-2.9}^{+2.3}$	${ }_{-2.4}^{+1.8}$	${ }_{-3.4}^{+3.0}$
Total	${ }_{-4.3}^{+4.0}$	${ }_{-4.5}^{+4.3}$	${ }_{-5.3}^{+5.0}$

- The systematics most likely to saturate are those related to the efficiency.
- Trigger calibration expected to be greatly simplified in run III and beyond.
- Tracking efficiency is more challenging, need to measure the material in the detector.
- The rest should go down to small levels.

$\left|V_{c b}\right|$ measurement from B_{s} decays

- Recently measured $\left|\mathrm{V}_{\mathrm{cb}}\right|$ with B_{s} decays.
- Normalise $\mathrm{B}_{\mathrm{s}}{ }^{0}$ signal to corresponding B^{0} decays.

$$
\begin{aligned}
\mathcal{R} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)}, \\
\mathcal{R}^{*} & \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}\right)}
\end{aligned}
$$

- Use $B^{0}->D^{(*)} \mu v$ branching fractions to determine normalisation with 4(3)\% uncertainty from PDG.
- Measurement of $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$ used to control production fractions.
- Fit to determine form factors and signal yield.

- Also measured $\mathrm{B}_{\mathrm{s}}->\mathrm{D}_{\mathrm{s}}(1)$ form factors:

LHCb, arXiv:2003.08453

- Also limited by current knowledge on $\mathrm{D}_{(\mathrm{s})}$ branching fractions.

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ results

- Performed analysis with CLN and BGL parameterisations.
- Parameters have constraints from e.g. HPQCD [1].

$$
\begin{aligned}
\left|V_{c b}\right|_{\mathrm{CLN}} & =(41.4 \pm 0.6(\text { stat }) \pm 0.9(\text { syst }) \pm 1.2(\mathrm{ext})) \times 10^{-3} \\
\left|V_{c b}\right|_{\mathrm{BGL}} & =(42.3 \pm 0.8(\text { stat }) \pm 0.9(\text { syst }) \pm 1.2(\mathrm{ext})) \times 10^{-3}
\end{aligned}
$$

- Both results compatible with each other and existing measurements.

Yes, it really is a $\left|V_{c b}\right|$ measurement

- If both numerator and denominator depend on $\left|\mathrm{V}_{\mathrm{cb}}\right|$, how can one be sensitive to $\left|\mathrm{V}_{\mathrm{cb}}\right|$?
- The point is that the denominator is measured, we do not use a prediction which depends on $\left|\mathrm{V}_{\mathrm{cb}}\right|$.
- The $\mathrm{B}^{0} \rightarrow>\mathrm{D}^{(*)}$ branching fraction measurements could be correlated to the exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$ B-factory measurements, but I understand this is a small effect(?).
- We do, however, rely on the equally of semileptonic widths. Bigi, Mannel, Urattsev, HHEPog(2011)012
- We are heavily dependent on this in LHCb, so might be useful to provide precise validations in data. More lifetime measurements?

Planned measurements

- Plan to perform a similar measurement with $\Lambda_{b}{ }^{0}$ decays.
- Here the normalisation is a bit different, we instead normalise to inclusive $\wedge_{b} 0$ semileptonic decays and employ equally of partial widths.

$$
\Gamma\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}\right)=\frac{n_{\text {corr }}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}_{\mu}\right)}{n_{\text {corr }}\left(\Lambda_{b}^{0} \rightarrow X_{c} \mu^{-}\right) \times \Gamma\left(\Lambda_{b}^{0} \rightarrow X_{c} \mu^{-} \bar{\nu}_{\mu}\right)}
$$

- Plan is to use the differential measurement as a function of q^{2} to control form factor uncertainties a la LHCb-PAPER-2017-016
- Also plan to perform a measurement with $\mathrm{B}^{0} \rightarrow>\mathrm{D}^{*} \mu \mathrm{v}$ decays using a similar method:

$$
\frac{\mathcal{B}\left(B^{0} \rightarrow D^{*-} \mu^{+} v_{\mu}\right)}{\mathcal{B}\left(B \rightarrow \bar{X}_{c} \mu^{+} v_{\mu} X\right)}=\frac{2 n_{\text {corr }}\left(B^{0} \rightarrow D^{*-} \mu^{+} v_{\mu}\right)}{n_{\text {corr }}\left(\bar{D}^{0} \mu^{+} X\right)+n_{\text {corr }}\left(D^{-} \mu^{+} X\right)}
$$

Summary and prospects

- LHCb is still relatively new to performing precise $\left|\mathrm{V}_{\mathrm{xb}}\right|$ measurements.
- More dependent on external inputs, but can make precise measurements in the future which are largely uncorrelated to B-factory ones.
- Expect to stay competitive with Belle-II but will take a lot of work.
- Eventually we will perform full angular analyses of these modes, which will also help determinations indirectly.
- Expect shape information from e.g. $\mathrm{B}^{0} \rightarrow>\mathrm{D}^{*} \mu v$ decays to be complimentary to those obtained at $\mathrm{e}^{+} \mathrm{e}^{-}$machines.

