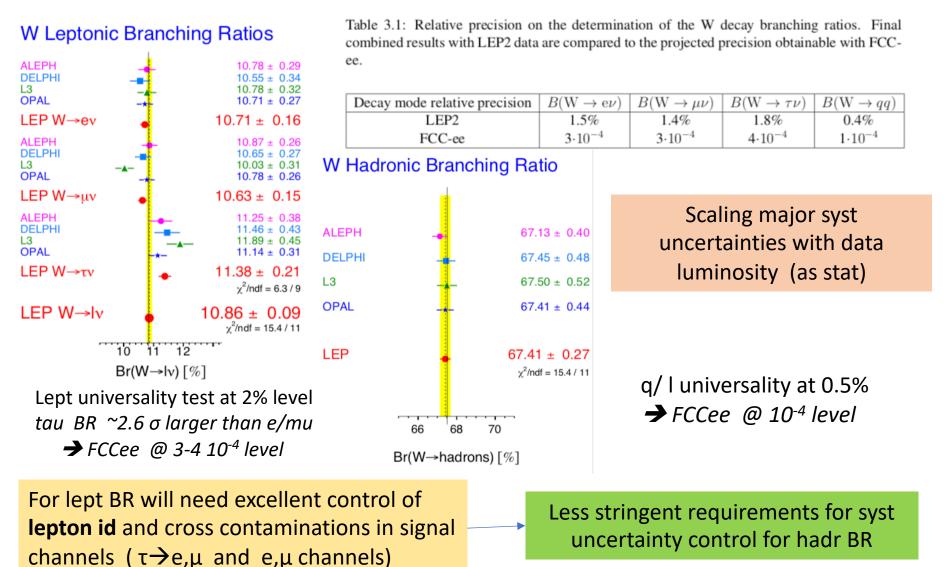


Flavour tagging in W decays @FCCee

Paolo Azzurri – INFN Pisa Snowmass2021 CKM Matrix January 12th 2021

W-pairs at FCCee : the OkuW

√s=162 GeV : L~3 10³⁵ collect 12/ab 45-60 10⁶ WW decays


√s=240 GeV : L~0.7 10³⁵ collect 5/ab 80 10⁶ WW decays 3·10⁵ (LEP 161)

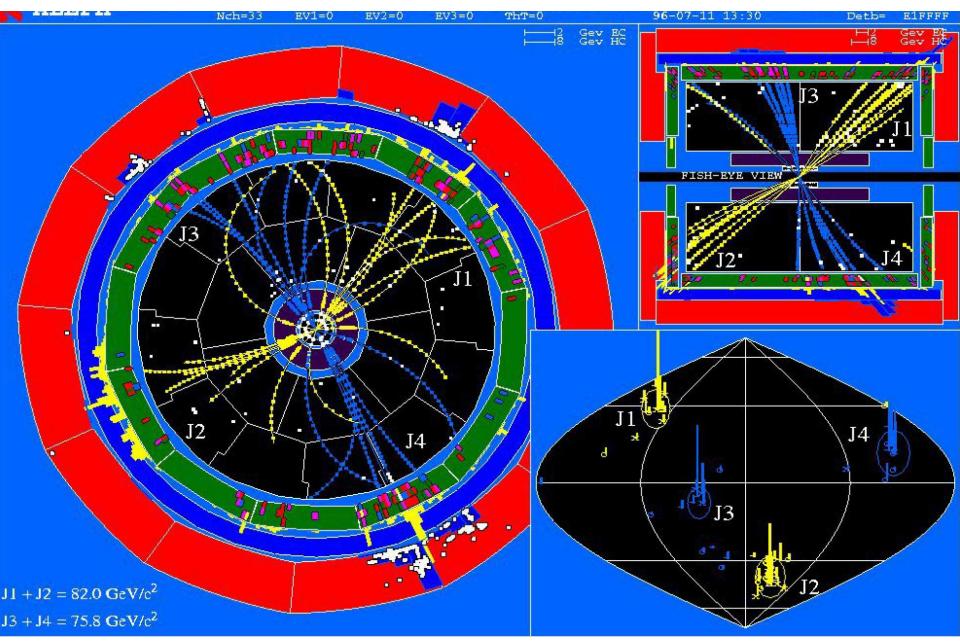
2.10³ (LEP 200)

√s=365 GeV : L~ 10³⁴ collect 1.65/ab 20 10⁶ WW decays

In total **→** 300 10⁶ W decays

W decay BR

Snowmass CKM Matrix - Jan 12 2021 P. Azzurri - Flavour tagging in W decays @FCCee


Hadronic W BR $R_{W} = \frac{B_{q}}{1 - B_{q}} = \left(1 + \frac{\alpha_{S}(m_{W}^{2})}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^{2}. \Rightarrow \Delta\alpha_{S} \text{ (FCCee) } \approx (9 \pi/2) \Delta B_{q} \approx 10^{-3}$ $\left(1 + \frac{\alpha_{s}(M_{W})}{\pi} + 1.409 \frac{\alpha_{s}^{2}(M_{W})}{\pi^{2}} - 12.77 \frac{\alpha_{s}^{3}(M_{W})}{\pi^{3}}\right)$

If the CKM unitarity is not assumed in the sum, and $\alpha_s (m^2_W)$ is taken form other independent precision determinations, B_q and R_W measurements can be used in turn to provide a stringent test of CKM unitarity for the five lightest quarks

$$S_{W} = |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} + |V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2}$$

From LEP : $|V_{cs}| = 0.969 \pm 0.013$ $\Delta |V_{cs}|$ (FCCee) $\rightarrow 2 \ 10^{-4}$

Flavor tagging can also allow to measure coupling to c & b-quarks (Vcs, Vcb,..) directly !

Snowmass CKM Matrix - Jan 12 2021 P. Azzurri - Flavour tagging in W decays @FCCee

Hadronic W flavor tagging : cX cs

Charm (and strangeness) tagging at LEP2

DELPHI (161+172 GeV ~150 WW) Phys. Lett. B 439 (1998) 209

 $\begin{aligned} r^{(cs)} &= \frac{\Gamma(W^+ \to c\bar{s})}{\Gamma(W^+ \to hadrons)} = 0.46^{+0.18}_{-0.14}(stat) \pm 0.07(syst) & |V_{cs}| = 0.94^{+0.32}_{-0.26}(stat) \pm 0.13(syst) \\ & \Delta |V_{cs}| \text{ (stat) FCCee} \rightarrow 3 \ 10^{-4} \end{aligned}$

ALEPH 172-183GeV (~1K WW) Phys. Lett. B 465 (1999) 349

$$R_{c}^{W} = \frac{|V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} + |V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2}}.$$

$$R_c^W = 0.515 \pm 0.053.$$
 $|V_{cs}| = 1.00 \pm 0.11.$

 $\Delta R_{c} \stackrel{W}{(\text{stat})} FCCee \rightarrow 1.5 \ 10^{-4} \qquad \Delta |V_{cs}| \ (\text{stat}) FCCee \rightarrow 3 \ 10^{-4}$ Snowmass CKM Matrix - Jan 12 2021 P. Azzurri - Flavour tagging in W decays @FCCee

Hadronic W flavor tagging : cX cs

OPAL 183-189 GeV (4K WW) Phys. Lett. B 490 (2000) 71-86

 $R_{\rm c}^{\rm W} = 0.481 \pm 0.042 \,(\text{stat.}) \pm 0.032 \,(\text{syst.})$ $|V_{\rm cs}| = 0.93 \pm 0.08 \,(\text{stat.}) \pm 0.06 \,(\text{syst.}) \pm 0.004 \,(\text{CKM}),$

 $\Delta R_{\rm c}^{\rm W}$

183 GeV | 189 GeV

0.012

0.005

0.003

0.007

0.005

0.009

0.007

0.005

0.017

0.002

0.010

0.014

0.003

0.006

0.032

0.047

0.478

0.011

0.007

0.004

0.007

0.006

0.010

0.006

0.007

0.016

0.003

0.010

0.012

0.003

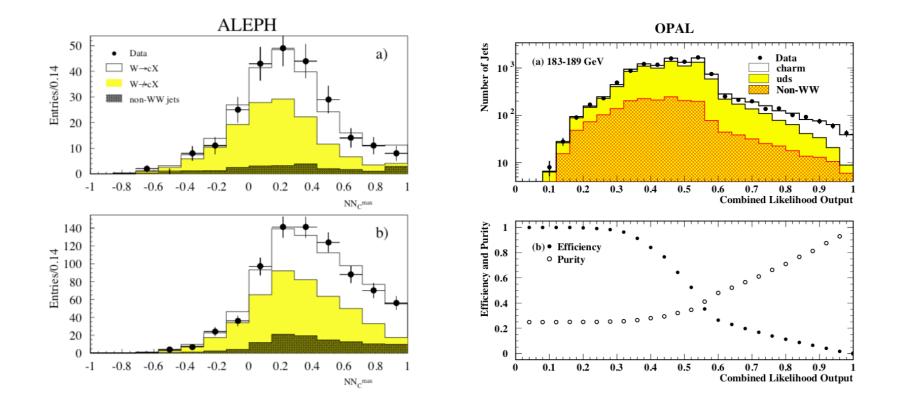
0.006

0.032

0.090

0.493

ΔR_c^{W} (stat) FCCee \rightarrow 2 10⁻⁴

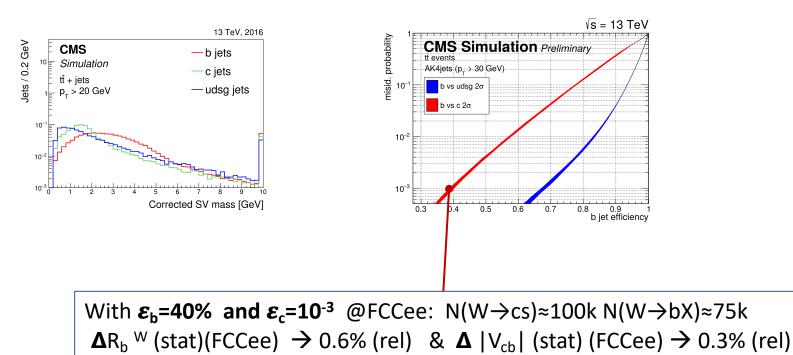

 Δ |V_{cs}| (stat) FCCee \rightarrow 4 10⁻⁴

Source of · • •

Table 2. Systematic error	$s on n_c$.		Systematic Error
Source	$\Delta R_{c}^{W} (10^{-2})$		Hadronisation Model
Background normalization	0.2		Centre–of–mass Energy
			Mass of the W Boson
Hadronization	2.9		Charm Fragmentation Function
Color reconnection	0.3		Background Cross-Section
Calorimeter calibration	0.9		Background Composition
Tracking error	0.3		Charm Hadron Fractions
0			Light Quark Composition
Impact parameter resolution	0.4		Vertex Reconstruction
Mass of the W boson	0.4		Charm Hadron Lifetimes
Jet algorithm	0.4		Charm Decay Multiplicity
			Lepton Identification
Charm production	0.1		Lepton Energy Spectrum
Charm fragmentation	0.3		Branching ratio $Br(c \to \ell)$
Charm decay properties	0.9		Total systematic error
STOWADER GM Matrix - Jan 12 202	1 P. Ayzzyurri - Fla	avour tagging in	W decaystatistical error
	0.0]	Value of $R_{\rm c}^{\rm W}$

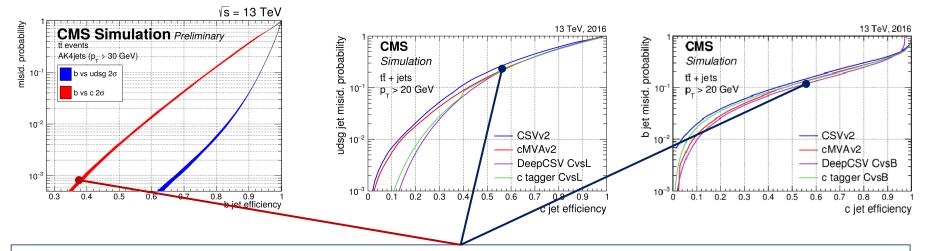
Table	2:	Systematic errors on	$\mathbf{R}^{\mathbf{W}}_{\mathbf{u}}$.
		Systematic criters on	

Hadronic W flavor tagging : cX cs



binned likelihood fits to the shape of the output distributions Including $Z \rightarrow qq$ Control Regions

Snowmass CKM Matrix - Jan 12 2021 P. Azzurri - Flavour tagging in W decays @FCCee


Hadronic W flavor tagging : cb Xb

 $|V_{cb}| = (41.0 \pm 1.4) \times 10^{-3} \rightarrow BR = 5.6 \ 10^{-4} \ (1.7 \ 10^5 \ W \rightarrow cb \ @FCCee)$ $|V_{ub}| = (3.82 \pm 0.24) \times 10^{-3} \rightarrow BR = 4.9 \ 10^{-6} \ (1.5 \ 10^3 \ W \rightarrow ub \ @FCCee)$

Hadronic W flavor tagging : cb Xb

 $|V_{cb}| = (41.0 \pm 1.4) \times 10^{-3} \rightarrow BR = 5.6 \ 10^{-4} \ (1.7 \ 10^5 \ W \rightarrow cb \ @FCCee)$ $|V_{ub}| = (3.82 \pm 0.24) \times 10^{-3} \rightarrow BR = 4.9 \ 10^{-6} \ (1.5 \ 10^3 \ W \rightarrow ub \ @FCCee)$

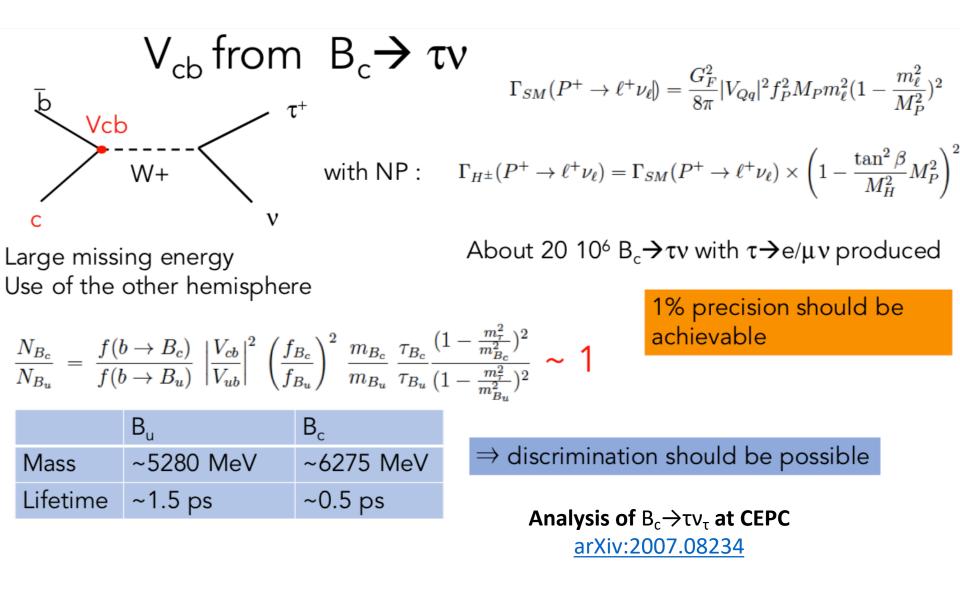
First tag ε_{b} =40% and ε_{c} =10⁻³ ε_{uds} =10⁻⁵ Second tag with ε_{c} =60% and ε_{b} =0.1 ε_{uds} =0.2 @FCCee: N(W \rightarrow cs,cd) \approx 20k N(W \rightarrow cb) \approx 50k \rightarrow direct Δ |V_{cb}| (stat) (FCCee) \rightarrow 0.2%(rel)

Similar conclusions on s19 here (M.H.Schune FCC workshop Jan 2020) https://indico.cern.ch/event/838435/contributions/3635812/attachments/1971221/3279502/FCCee_17Jan2020_v2.pdf

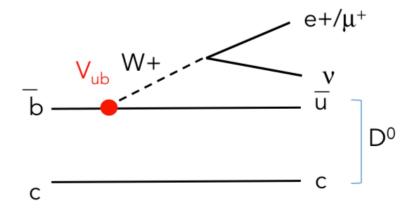
```
Inverting second tag could also obtain \Delta |V_{ub}| (stat) (FCCee) \rightarrow ~3-5%(rel)
(less interesting : ~1% from LHCb/Belle2/ FCCee Z)
Snowmass CKM Matrix - Jan 12 2021 P. Azzurri - Flavour tagging in W decays @FCCee
```

From Stephane Monteil

Z pole	Particle specie at FCC- <i>ee</i>	B^0	B^+	B^0_s	Λ_b	B_c^+	$c\overline{c}$	$\tau^{-}\tau^{+}$
	Yield (×10 ⁹) [5.10 ¹² Z]	310	310	75	65	1.5^{\dagger}	600	180


	Observable / Experiments	Current W/A	Belle II (50 /ab)	LHCb-U1 (23/fb)	FCC-ee
	CKM inputs				
	γ (uncert., rad)	$1.296\substack{+0.087\\-0.101}$	1.136 ± 0.026	1.136 ± 0.025	1.136 ± 0.004
τν	$ V_{ub} $ (precision)	5.9%	2.5%	6%	1%
	Mixing-related inputs				
	$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.009	0.691 ± 0.005
	ϕ_s (uncert. rad 10^{-2})	-1.5 ± 3.5	n/a	-3.65 ± 0.05	-3.65 ± 0.01
	$\Delta m_d (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	same	same	same
	$\Delta m_s (\mathrm{ps}^{-1})$	17.757 ± 0.021	same	same	same
	$a_{\rm fs}^d (10^{-4}, \text{precision})$	23 ± 26	-7 ± 15	-7 ± 15	-7 ± 2
	$a_{\rm fs}^s (10^{-4}, \text{precision})$	-48 ± 48	n/a	0.3 ± 15	0.3 ± 2

See recent review *New physics in B meson mixing: future sensitivity and limitations* <u>arXiv:2006.04824</u> Phys. Rev. D 102, 056023 (2020)


« identify the measurement of |Vcb| as one of the key ingredients in which progress beyond current expectations is necessary to maximize future sensitivity .»

 $B^+ \rightarrow \dot{}$

From M.H.Schune FCC workshop Jan 2020

From M.H.Schune FCC workshop Jan 2020

But
$$B_u \rightarrow \overline{D}^0 \ell v$$
 and DCS D^0 decay

$$\frac{BR(B_c \to D^0 \ell^+ \nu)}{BR(B_u \to \overline{D^0} \ell^+ \nu)} \sim .0092$$
 Number kindly
provided by Sebastien
Descotes-Genon)

$$\frac{N(B_c)}{N(B_u)} = \frac{1.5}{600} \frac{3.9 \ 10^{-2}}{1.5 \ 10^{-4}} \times .0092 \sim .006$$

	B _u	B _c
Mass	~5280 MeV	~6275 MeV
Lifetime	~1.5 ps	~0.5 ps

 \Rightarrow some discrimination. Studies to be performed (need a factor ~ 200)

Conclusions

- 200M Hadronic W decays at FCCee will offer a great opportunity for **precise direct CKM measurements**
 - $B_q => test of unitarity at 10^{-4} level for |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 + |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2$
 - Direct measurements of R_c and $|V_{cs}|$ with charm- (and s-) tagging, also at ~ 10⁻⁴ level stat : what will be syst limitations ?
 - Direct measurements of R_b and $|V_{cb}|$ with b- (and charm-) tagging at few 10^{-3} level stat . Maybe also $|V_{ub}|$ at 5% (less interesting)
 - Looking forward to more detailed studies for a better understanding of these measurements

	Central	Uncertainties Reference					
	values	Current [18]	Phase I	Phase II	Phase III	Phases I–III	
$ V_{ud} $	0.97437	± 0.00021	id	id	id	[18]	
$ V_{us} f_+^{K \to \pi}(0)$	0.2177	± 0.0004	id	id	id	[18]	
$ V_{cd} $	0.2248	± 0.0043	± 0.003	id	id	[19, 20]	
$ V_{cs} $	0.9735	± 0.0094	id	id	id	[18-20]	
$\Delta m_d \ [\mathrm{ps}^{-1}]$	0.5065	± 0.0019	id	id	id	[17]	
$\Delta m_s \; [\mathrm{ps}^{-1}]$	17.757	± 0.021	id	id	id	[17]	
$ V_{cb} _{\rm SL} imes 10^3$	42.26	± 0.58	± 0.60	± 0.44	id	[21]	
$ V_{cb} _{W\to cb} \times 10^3$	42.20				± 0.17	[22-24]	
$ V_{ub} _{\rm SL} imes 10^3$	3.56	± 0.22	± 0.042	± 0.032	id	[21]	
$ V_{ub}/V_{cb} $ (from Λ_b)	0.0842	± 0.0050	± 0.0025	± 0.0008	id	[25]	
$\mathcal{B}(B\to\tau\nu)\times 10^4$	0.83	± 0.24	± 0.04	± 0.02	± 0.009	[21, 22]	
$\mathcal{B}(B \to \mu \nu) \times 10^6$	0.37		± 0.03	± 0.02	id	[21]	
$\sin 2\beta$	0.680	± 0.017	± 0.005	± 0.002	± 0.0008	[21, 22, 25]	
$\alpha \ [^{\circ}] \ (\mathrm{mod} \ 180^{\circ})$	91.9	± 4.4	± 0.6	id	id	[21]	
$\gamma \ [^{\circ}] \ (mod \ 180^{\circ})$	66.7	± 5.6	± 1	± 0.25	± 0.20	[21, 22, 25]	
$\beta_s \text{ [rad]}$	-0.035	± 0.021	± 0.014	± 0.004	± 0.002	[22, 25]	
$A^d_{ m SL} imes 10^4$	-6	± 19	± 5	± 2	± 0.25	[14, 17, 22, 26]	
$A_{ m SL}^s imes 10^5$	3	± 300	± 70	± 30	± 2.5	[14, 17, 22, 26]	
$\bar{m}_t \; [\text{GeV}]$	165.30	± 0.32	id	id	± 0.020	[18, 22]	
$\alpha_s(m_Z)$	0.1185	± 0.0011	id	id	± 0.00003	[18, 22]	
$f_{+}^{K \to \pi}(0)$	0.9681	± 0.0026	± 0.0012	id	id	[25]	
f_K [GeV]	0.1552	± 0.0006	± 0.0005	id	id	[25]	
f_{B_s} [GeV]	0.2315	± 0.0020	± 0.0011	id	id	[25]	
B_{B_s}	1.219	± 0.034	± 0.010	± 0.007	id	[25]	
f_{B_s}/f_{B_d}	1.204	± 0.007	± 0.005	id	id	[25]	
B_{B_s}/B_{B_d}	1.054	± 0.019	± 0.005	± 0.003	id	[25]	
$ ilde{B}_{B_s}/ ilde{B}_{B_d}$	1.02	± 0.05	± 0.013	id	id	[25, 27, 28]	
\tilde{B}_{B_s}	0.98	± 0.12	± 0.035	id	id	[25, 27, 28]	
η_B	0.5522	± 0.0022	id	id	id	[29]	

arXiv:2006.04824

- Phase I: LHCb 50/fb, Belle II 50/ab (late 2020s);
- \bullet Phase II: LHCb 300/fb, Belle II 250/ab (late 2030s);
- Phase III: Phase II + FCC-ee (5 $\times \, 10^{12} \ Z$ decays).