Inclusive semileptonic B decays and lattice QCD

Paolo Gambino

Università di Torino \& INFN, Torino

Theory meets experiment on $\left|V_{u b}\right|$ and $\left|V_{c b}\right|,||-| 2$ January 202 I

INCLUSIVE DECAYS: BASICS

- Simple idea: inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows us to express it in terms of B meson matrix elements of local operators, embodying quark-hadron duality
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: double series in $\alpha_{s,}, \mathbf{N} \boldsymbol{m}_{b}$
- Lowest order: decay of a free b, linear Λ / m_{b} absent. Depends on $m_{b, c} 2$ parameters at $\mathrm{O}\left(1 / \mathrm{mb}^{2}\right), 2$ more at $\mathrm{O}\left(1 / \mathrm{mb}^{3}\right) \ldots$

INCLUSIVE SEMILEPTONIC B DECAYS

Inclusive observables are double series in $\Lambda / \mathrm{m}_{\mathrm{b}}$ and α_{s}

$$
\begin{aligned}
M_{i}= & M_{i}^{(0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(1)}+\left(\frac{\alpha_{s}}{\pi}\right)^{2} M_{i}^{(2)}+\left(M_{i}^{(\pi, 0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(\pi, 1)}\right) \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \\
& +\left(M_{i}^{(G, 0)}+\frac{\alpha_{s}}{\pi} M_{i}^{(G, 1)}\right) \frac{\mu_{G}^{2}}{m_{b}^{2}}+M_{i}^{(D, 0)} \frac{\rho_{D}^{3}}{m_{b}^{3}}+M_{i}^{(L S, 0)} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots \\
\mu_{\pi}^{2}(\mu)= & \frac{1}{2 M_{B}}\langle B| \bar{b}_{v}(i \vec{D})^{2} b_{v}|B\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 M_{B}}\langle B| \bar{b}_{v} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b_{v}|B\rangle_{\mu}
\end{aligned}
$$

Reliability of the method depends on our control of higher order effects. Quarkhadron duality violation would manifest as inconsistency in the fit.

Current HFLAV kinetic scheme fit includes all corrections $O\left(\alpha_{s}^{2}, \alpha_{s} / m_{b}^{2}, 1 / m_{b}^{3}\right), m_{c}$ constraint from sum rules/lattice

EXTRACTION OFTHE OPE PARAMETERS

Global shape parameters (first moments of the distributions, various lower cut on E_{l}) tell us about m_{b}, m_{c} and the B structure, total rate about $\left|V_{c b}\right|$

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications (rare decays, $V_{u b, . . .) ~}^{\text {) }}$

FIT RESULTS

$m_{b}^{k i n}$	$\bar{m}_{c}(3 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$	this is
4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21	HFLAV fit
0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78	

Without mass constraints $m_{b}^{k i n}(1 \mathrm{GeV})-0.85 \bar{m}_{c}(3 \mathrm{GeV})=3.714 \pm 0.018 \mathrm{GeV}$

- results depend little on assumption for correlations and choice of inputs, I.8\% determination of V_{cb}
- 20-30\% determination of the OPE parameters
- b mass determination in agreement with recent lattice and sum rules results

HIGHER POWER CORRECTIONS

Proliferation of non-pert parameters starting $1 / m^{4}: 9$ at $\operatorname{dim} 7,18$ at $\operatorname{dim} 8$
In principle relevant: HQE contains $O\left(1 / m_{b}^{n} 1 / m_{c}^{k}\right) \quad$ Mannel,Turczyk,Uraltsev
Lowest Lying State Saturation Approx (LLSA) truncating

$$
\langle B| O_{1} O_{2}|B\rangle=\sum_{\substack{n \\ \text { see also Heinonen,Mannel । } 407.4384}}\langle B| O_{1}|n\rangle\langle n| O_{2}|B\rangle
$$

and relating higher dimensional to lower dimensional matrix elements, e.g.

$$
\rho_{D}^{3}=\epsilon \mu_{\pi}^{2} \quad \rho_{L S}^{3}=-\epsilon \mu_{G}^{2} \quad \epsilon \sim 0.4 \mathrm{GeV}
$$

excitation energy to P -wave states. LLSA might set the scale of effect, but large corrections to LLSA have been found in some cases 1206.2296

We use LLSA as loose constraint or priors (60% gaussian uncertainty, dimensional estimate for vanishing matrix elements) in a fit including higher powers. The rest of the fit is unchanged, with slightly smaller theoretical errors

$$
\left|V_{c b}\right|=42.00(64) \times 10^{-3}
$$

PROSPECTS for INCLUSIVE $V_{c b}$

- Theoretical uncertainties generally larger than experimental ones
- $\mathrm{O}\left(\alpha_{s} / \mathrm{mb}^{3}\right)$ calculation completed for width (Mannel, Pivovarov) in progress for the moments (S. Nandi, PG)
- 3loop relation between MS and kin scheme just completed 2005.06487 It can be used to improve the precision of the m_{b} input
- $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{3}\right)$ corrections to total width just completed by Fael, Schoenwald, Steinhauser 2011.13654: towards I\% uncertainty
- Electroweak (QED) corrections require attention
- New observables in view of Belle-ll: FB asymmetry proposed by S.Turczyk could be measured already by Babar and Belle now, q² moments (Fael, Mannel, Vos)...
- Lattice QCD is the next frontier

MESON MASSES FROM ETMC

Melis, Simula, PG 1704.06 I 05

$$
M_{H_{Q}}=m_{Q}+\bar{\Lambda}+\frac{\mu_{\pi}^{2}-a_{H} \mu_{G}^{2}}{2 m_{Q}}+\ldots
$$

- on the lattice one can compute mesons for arbitrary quark masses
see also Kronfeld \& Simone hep-ph/0006345, I 802.04248
- We used both pseudoscalar and vector mesons
- Direct $2+I+I$ simulation, $a=0.62-0.89 \mathrm{fm}, m_{\pi}=210-450 \mathrm{MeV}$, heavy masses from m_{c} to $3 m_{c}$, ETM ratio method with extrapolation to static point.
- Kinetic scheme with cutoff at IGeV , good sensitivity up to $\mathrm{I} / \mathrm{m}^{3}$ corrections
- Results consistent with s.l. fits, improvements under way, also following new 3loop calculation of pole-kinetic mass relation

INCLUSIVE DECAYS ONTHE LATTICE

- Inclusive processes nearly impossible to treat directly on the lattice
- However, vacuum current correlators can be computed in euclidean space-time and related to $e^{+} e^{-} \rightarrow$ hadrons or τ decay via analyticity
- In our case the correlators have to be computed in the B meson Hashimoto I703.0 188 I
- Analytic continuation more complicated: two cuts, decay occurs only on a portion of the physical cut.
- While the calculation of the spectral density of hadronic correlators is an ill-posed problem, it is accessible after smearing, as provided by phase-space integration Hansen, Meyer, Robaina, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

A NEW APPROACH

$$
\frac{d \Gamma}{d q^{2} d q^{0} d E_{\ell}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{8 \pi^{3}} L_{\mu \nu} W^{\mu \nu} \quad \text { triple diff distribution } B_{s} \text { decays }
$$

$$
W^{\mu \nu} \sim \sum_{X_{c}} \frac{1}{2 E_{B_{s}}}\left\langle\bar{B}_{s}(\boldsymbol{p})\right| J^{\mu \dagger}\left|X_{c}(\boldsymbol{r})\right\rangle\left\langle X_{c}(\boldsymbol{r})\right| J^{\nu}\left|\bar{B}_{s}(\boldsymbol{p})\right\rangle \sim \operatorname{Imi} \int d^{4} x e^{-i q . x}\left\langle B_{s}\right| T J^{\mu \dagger}(x) J^{\nu}(0)\left|B_{s}\right\rangle
$$

after integration over El

$$
\Gamma=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{24 \pi^{3}} \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q}^{2} \sqrt{\boldsymbol{q}^{2}} \sum_{l=0}^{2} \bar{X}^{(l)} \quad \bar{X}^{(l)} \equiv \int_{\sqrt{m_{D_{s}}^{2}+\boldsymbol{q}^{2}}}^{m_{B_{s}}-\sqrt{\boldsymbol{q}^{2}}} d \omega X^{(l)}=\int K(\omega, \mathbf{q})_{\mu \nu} \mathbf{W}^{\mu \nu} \mathbf{d} \omega
$$

where ω hadr. energy, $X^{(I)}$ linear combinations of $W^{\mu \nu}$. 4point functions on the lattice are related to the hadronic tensor in euclidean

A NEW APPROACH

$$
\begin{array}{r}
\sum_{\boldsymbol{x}} e^{i \boldsymbol{q} \cdot \boldsymbol{x}} \frac{1}{2 m_{B_{s}}}\left\langle B_{s}(\mathbf{0})\right| J_{\mu}^{\dagger}(\boldsymbol{x}, t) J_{\nu}(\mathbf{0}, 0)\left|B_{s}(\mathbf{0})\right\rangle \sim\left\langle B_{s}(\mathbf{0})\right| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) e^{-\hat{H} t} \tilde{J}_{\nu}(\boldsymbol{q})|B(\mathbf{0})\rangle \\
\tilde{J} \text { FT of } J
\end{array}
$$

integral over ω becomes $\int_{0}^{\infty} d \omega K(\omega, \boldsymbol{q})\left\langle B_{s}(\mathbf{0})\right| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) \delta(\hat{H}-\omega) \tilde{J}_{\nu}(\boldsymbol{q})\left|B_{s}(\mathbf{0})\right\rangle$

$$
=\left\langle B_{s}(\mathbf{0})\right| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) K(\hat{H}, \boldsymbol{q}) \tilde{J}_{\nu}(\boldsymbol{q})\left|B_{s}(\mathbf{0})\right\rangle
$$

K approximated by polynomials

$$
K(\hat{H}, \boldsymbol{q})=k_{0}(\boldsymbol{q})+k_{1}(\boldsymbol{q}) e^{-\hat{H}}+\cdots+k_{N}(\boldsymbol{q}) e^{-N \hat{H}}
$$

K has a sharp hedge: sigmoid $1 /\left(1+e^{x / \sigma}\right)$ used to replace kinematic $\theta(x)$ for $\sigma \rightarrow 0$
Larger number N of Chebyshev polynomials needed for small σ

A PILOT NUMERICAL STUDY

Smeared spectral functions can be computed on the lattice in JLQCD setup, see 1704.08993
$2+1$ flavours of Moebius domain wall fermions with $1 / a=3.610(9) \mathrm{GeV}$ on 483×96 $M_{B s}=3.45 \mathrm{GeV}$, i.e. $m_{b}^{k i n}(1 \mathrm{GeV}) \approx 2.70 \mathrm{GeV}$ physical charm mass $m_{c}^{M S}(3 \mathrm{GeV})=1.00 \mathrm{GeV}$ $m_{b}-m_{c} \sim 1.7 \mathrm{GeV}$ only, $\mathbf{q}^{\max } \sim 1.16 \mathrm{GeV}$
$\mathrm{NB} m_{b}^{\text {lat }}=2.44 m_{c}^{\text {lat }}:$ we don't know it precisely...

Extrapolation to $\sigma \rightarrow 0$ possible, but error due to finite N must be estimated

COMPARISON WITH OPE

OPE matrix elements from fits, sizeable power and pert corrections!

$\Gamma /\left|V_{c b}\right|^{2}=4.9(6) 10^{-13} \mathrm{GeV}$ Lattice
$\Gamma /\left|V_{c b}\right|^{2}=5.4(8) 10^{-13} \mathrm{GeV}$ OPE including $O\left(\alpha_{s}^{2}, 1 / m_{b}^{3}\right)$
OPE uncertainty: "b" mass error (dominant), higher orders, matrix elements

HADRONIC MOMENTS

Hashimoto, Maechler, PG in progress

WHAT NEXT?

- Leptonic, hadronic energy moments, SV sum rules with existing data
- D inclusive semileptonic decays vs Cleo-c data for widths and lepton spectra (validation of the method, study of lattice systematics such as finite volume effects and disconnected diagrams, ...)
- Towards the physical b mass (ratio method, step scaling, ...): large recoil momentum \mathbf{q} problematic
- Smooth cuts on experimental and OPE side?
- $B \rightarrow X_{u} \ell \nu, B \rightarrow X_{s} \ell^{+} \ell^{-}$: kinematic cuts can in principle be implemented
- Extension of the method to low energy $l-\mathrm{N}$ inelastic scattering Hashimoto et al., 2010.01253 [hep-lat]

STARTING A COLLABORATION

- Shoji Hashimoto KEK
- Marco Panero, Sandro Maechler, Antonio Smecca, PG Turin
- Nazario Tantalo, Agostino Patella

Roma Tor Vergata

- Silvano Simula, Francesco Sanfilippo INFN Roma Tre

CONCLUSIONS

- Inclusive s.l. B decays are in a good shape: consistent fit, new higher order calculations and future data from Belle Il give hope for smaller uncertainties, but tension with $B \rightarrow D^{*} \ell \nu$ persists
- New lattice method allows for fully non-pert calculation of inclusive observables (widths, moments with arbitrary kinematic cuts) potentially validating OPE. Promising pilot computation at $m_{b} \sim 2.7 \mathrm{GeV}$ in good agreement with OPE.
- Lattice can also act as a virtual lab, computing obs we cannot access experimentally (or not precisely), which may enhance OPE predictivity, and observing the onset of duality

