

Third order corrections to semileptonic decays

Snowmass 2021 — Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, January 11, 2021

Matthias Steinhauser | in collaboration with Matteo Fael and Kay Schönwald

TTP KIT

Motivation

 V_{ub} [10⁻³] Inclusive Average 68% C.L. IV.I: GGOU Average $\Delta \chi^2 = 1$ |V_|: global fit in KS 3.5 3 HEI AV Summer 2010 2.5 $P(\chi^2) = 7$ 36 38 40 34 42 $|V_{cb}| [10^{-3}]$ • tension between inclusive and exclusive determinations • current uncertainty on $|V_{cb}|: \approx 2\% \Rightarrow 1\%$ (?) important for $B_s \rightarrow \mu^+\mu^ K \rightarrow \pi \nu \bar{\nu}$

 ϵ_K

• $|V_{cb}|_{\text{incl.}} = (42.19 \pm 0.78) \times 10^{-3}$ $|V_{ub}|_{\text{incl.}} = (4.32 \pm 0.12_{\text{exp}} \pm 0.13_{\text{th}}) \times 10^{-3}$ theory uncertainties dominate

 $\Gamma(B \to X_c \ell \bar{\nu})$

$$\begin{split} & \Gamma = \Gamma_{0} + \Gamma_{\mu\pi} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + \Gamma_{\mu} \frac{\mu_{G}^{2}}{m_{b}^{2}} + \Gamma_{\rho} \frac{\rho_{D}^{3}}{m_{b}^{3}} + \Gamma_{\rho} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \dots \\ & \bullet \Gamma_{0} \\ & \text{up to } \mathcal{O}(\alpha_{s}^{2}): \text{ [Jezabek, Kühn'89; Nir'89 ...; Gambino et al.'05; Melnikov'08; Biswas, Melnikov'08; Pak, Czarnecki'08; Dowling, Piclum, Czarnecki'08] \\ & \text{NEW: } \mathcal{O}(\alpha_{s}^{3}) \text{ [Fael, Schönwald, Steinhauser'20]} \\ & \bullet \Gamma_{\mu\pi}, \Gamma_{\mu_{G}} \\ & \text{up to } \mathcal{O}(\alpha_{s}): \text{ [Becher, Boos, Lunghi'07; Alberti, Gambino, Nandi'14; Mannel, Pivovarov, Rosenthal'15]} \\ & \bullet \Gamma_{\rho_{D}} \\ & \text{up to } \mathcal{O}(\alpha_{s}): \text{ [Mannel, Pivovarov'19]} \\ & \bullet 1/m_{b}^{4}, 1/m_{b}^{5}: \text{ [Dassinger, Mannel, Turczyk'07; Mannel, Turczyk, Uraltsev'10; Mannel, Vos'18; Fael, Mannel, Vos'19]} \end{split}$$

lepton energy moments and hadronic invariant mass moments fit: compare theory to experiment (Belle,Babar,CDF,CLEO,DELPHI)

[Gambino,Schwanda'14; Alberti,Gambino,Healey,Nandi'15;

Gambino, Healey, Turczyk'16]

important: proper definition of bottom and charm quark masses

 \Rightarrow $|V_{cb}|$ and $\mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, m_b, m_c$

Method – key ideas

- optical theorem
- integrate out $(\ell \bar{
 u})$ loop
- loop momentum through (*lv̄*) loop: *q* 1-loop integration over *q* possible remaining 0, 1, 2, 3 loops
- asymptotic expansion [Beneke,Smirnov'97] around $m_b \approx m_c$: $\delta = 1 m_c/m_b$ [Dowling,Piclum,Czarnecki'08]
- $|k^{\mu}| \sim m_b$ (hard)
 - $|k^{\mu}| \sim \delta \cdot m_b$ (ultra-soft)
- expansion up to δ^{12}
- analytic calculation

Method – key ideas

- 1450 5-loop diagrams
- asymptotic expansion cross checked against asy [Pak,Smirnov'10]
- automated partial fraction decomposition: LIMIT [Herren'20]
- number of 3-loop integrals: $\approx 25\,000\,000$
- reduction to MIs:

FIRE [Smirnov, Chuharev'19] and LiteRed [Lee'12]

scalar integrals with

powers up to ± 12

- \Rightarrow interm. expr. pprox 100 GB
- number of MIs:

2 loops: 3+3; 3-loops: 20+19 [Lee, Smirnov'10; Fael, Schönwald, Steinhauser'20]

Matthias Steinhauser — Third-order corrections to semi-leptonic B decays — Snowmass 2021

LO, NLO, NNLO

LO, NLO, NNLO

N³LO: $\Gamma(B \to X_c \ell \bar{\nu}) = \Gamma_0 \left[X_0 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n X_n \right] + \dots$

$\blacksquare \text{ [Bigi,Shifman,Uraltsev,Vainshtein'96]} \Leftrightarrow \Gamma_{\text{sl}} \simeq \frac{G_F^2 |V_{cb}|^2}{192\pi^3} \left(M_B - \overline{\Lambda} \right)^{\circ}$

•
$$m_b^{\text{kin}}(\mu) = m_b^{\text{OS}} - [\overline{\Lambda}(\mu)]_{\text{pert}} - \frac{[\mu_\pi^2(\mu)]_{\text{pert}}}{2m_b^{\text{kin}}(\mu)} - \dots$$

[Bigi, Shifman, Uraltsev, Vainshtein'97; 2 loops: Czarnecki, Melnikov, Uraltsev'98; 3 loops: Fael, Schönwald, Steinhauser'20]

Starting point: m_b^{OS} , m_c^{OS} $\Rightarrow m_b$: transform to m_b^{kin} $\Rightarrow m_c$: transform to m_c^{kin} or $\overline{m}_c(\mu_c)$

 $\mu_{c} =$ 2 GeV, 3 GeV, \ldots

Matthias Steinhauser — Third-order corrections to semi-leptonic B decays — Snowmass 2021

pole masses: $\overline{\text{MS}}$ scheme (m_b): kinetic scheme:

n

bad convergence behaviour better but still not good optimal for *B* decays

 $\overline{\Lambda}$: binding energy of *B* meson

 μ_{π}^2 : kinetic energy of b quark inside B meson

Numerical results

$$\Gamma(B \to X_c \ell \bar{\nu}) = \Gamma_0 X_0 \left[1 + \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n Y_n \right] + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2} \right)$$
$$\alpha_s \equiv \alpha_s^{(4)}$$

	<i>Y</i> ₁	$Y_2^{ m rem}$	$eta_0 Y_2^{eta_0}$	$Y_3^{ m rem}$	$\beta_0^2 Y_3^{\beta_0^2}$
$m_b^{ m OS}, m_c^{ m OS}$	-1.72	3.08	-16.17	48.8	-212.1
$m_b^{ m kin}, m_c^{ m kin}$	-0.94	0.33	-4.08	-5.4	-15.4
$m_b^{\rm kin}, \overline{m}_c(3 { m GeV})$	-1.67	-3.39	-3.85	-97.7	69.1
$m_b^{\rm kin}, \overline{m}_c(2 { m GeV})$	-1.25	-1.21	-2.43	-68.8	67.9
$\overline{m}_b(\overline{m}_b), \overline{m}_c(3 \text{ GeV})$	3.07	-21.81	35.17	-56.7	119.4

Numerical results

$$\Gamma(B \to X_c \ell \bar{\nu}) = \Gamma_0 X_0 \left[1 + \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n Y_n \right] + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2} \right)$$
$$\alpha_s \equiv \alpha_s^{(4)}$$

	<i>Y</i> ₁	Y_2^{rem}	$eta_{0} Y_{2}^{eta_{0}}$	$Y_3^{ m rem}$	$\beta_0^2 Y_3^{\beta_0^2}$
$m_b^{ m OS}, m_c^{ m OS}$	-1.72	3.08	-16.17	48.8	-212.1
$m_b^{ m kin}, m_c^{ m kin}$	-0.94	0.33	-4.08	-5.4	-15.4
$m_b^{\rm kin}, \overline{m}_c(3 { m GeV})$	-1.67	-3.39	-3.85	-97.7	69.1
$m_b^{\rm kin}, \overline{m}_c(2 { m GeV})$	-1.25	-1.21	-2.43	-68.8	67.9
$\overline{m}_b(\overline{m}_b), \overline{m}_c(3 \text{ GeV})$	3.07	-21.81	35.17	-56.7	119.4

Numerical results (2)

$$\Gamma(B \to X_c \ell \bar{\nu}) = \Gamma_0 X_0 \left[1 + \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n Y_n \right] + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2} \right)$$
$$\alpha_s \equiv \alpha_s^{(4)}$$

$$\begin{split} & \Gamma(B \to X_c \ell \bar{\nu}) / \Gamma_0 = \\ m_b^{\rm kin}, \quad m_c^{\rm kin} : & 0.633 \left(1 - 0.066 - 0.018 - 0.007\right) \approx 0.575 \\ m_b^{\rm kin}, \quad \overline{m}_c(3 \ {\rm GeV}) : & 0.700 \left(1 - 0.116 - 0.035 - 0.010\right) \approx 0.587 \\ m_b^{\rm kin}, \quad \overline{m}_c(2 \ {\rm GeV}) : & 0.648 \left(1 - 0.087 - 0.018 - 0.0003\right) \approx 0.580 \end{split}$$

Matthias Steinhauser — Third-order corrections to semi-leptonic B decays — Snowmass 2021

$$b
ightarrow u \ell ar{
u}$$

(uncertainty estimate from behaviour of $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_s^2)$ terms)

Matthias Steinhauser — Third-order corrections to semi-leptonic B decays — Snowmass 202

Conclusions

- $\Gamma(b
 ightarrow c \ell \bar{
 u})$ to $\mathcal{O}(lpha_s^3)$
- expansion around $m_c \approx m_b$
- good convergence in physical point $m_c/m_b \approx 0.3$
- use m_b^{kin} and m_c^{kin} or $\overline{m}_c(\mu_c)$ α_s^3 corrections $\leq 1\%$
- reasonable convergence even for $m_c \to 0$ $\Rightarrow 3^{rd}$ order corrections to $\Gamma(b \to u \ell \bar{\nu})$ and $\Gamma(\mu^- \to e^- \nu_\mu \bar{\nu}_e)$