

How can we improve $|V_{xb}|$ Determinations?

Snowmass 2021: Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$

Caveats on inclusive $|V_{ub}|$

Phase-Space Coverage

Phase-Space Coverage

Clear separation of $b \to u\ell \bar{\nu}_{\ell}$ from $b \to c\ell \bar{\nu}_{\ell}$ only possible in corners of phase-space

(Often) use hadronic tagging & multivariate (or regular) background suppression

Direct cuts on m_X , E_{ℓ} **problematic** (i.e. direct shape-function dependence)

Higher multiplicity Often come with charged and neutral **Kaons** D^* decays (slow pions) (Slightly lower E_e)

Ok, but what's the problem?

reduced to an acceptable level

Abstract

We present the partial branching fraction for inclusive charmless semileptonic *B* decays and the corresponding value of the CKM matrix element $|V_{ub}|$, using a multivariate analysis method to access ~90% of the $B \rightarrow X_u \ell \nu$ phase space. This approach dramatically reduces the theoretical uncertainties from the *b*-quark mass and non-perturbative QCD compared to all previous inclusive measurements. The results are based on a sample of 657 million $B\bar{B}$ pairs collected with the Belle detector. We find that $\Delta \mathcal{B}(B \rightarrow X_u \ell \nu; p_\ell^{*B} > 1.0 \text{ GeV}/c) = 1.963 \times (1 \pm 0.088_{\text{stat.}} \pm 0.081_{\text{sys.}}) \times 10^{-3}$. Corresponding values of $|V_{ub}|$ are extracted using several theoretical calculations.

We report measurements of partial branching fractions for inclusive charmless semileptonic B decays $\overline{B} \to X_u \ell \overline{\nu}$, and the determination of the CKM matrix element $|V_{ub}|$. The analysis is based on a sample of 467 million $\Upsilon(4S) \to B\overline{B}$ decays recorded with the BABAR detector at the PEP-II e^+e^- storage rings. We select events in which the decay of one of the B mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other B meson. We measure partial branching fractions $\Delta \mathcal{B}$ in several restricted regions of phase space and determine the CKM element $|V_{ub}|$ based on different QCD predictions. For decays with a charged lepton momentum $p_{\ell}^* > 1.0$ GeV in the B meson rest frame, we obtain $\Delta \mathcal{B} = (1.80 \pm 0.13_{\text{stat.}} \pm 0.15_{\text{sys.}} \pm 0.02_{\text{theo.}}) \times 10^{-3}$ from a fit to the two-dimensional $M_X - q^2$ distribution. Here, M_X refers to the invariant mass of the final state hadron X and q^2 is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract $|V_{ub}| = (4.33 \pm 0.24_{\text{exp.}} \pm 0.15_{\text{theo.}}) \times 10^{-3}$ as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for \overline{B}^0 and B^- decays and derive a limit on the isospin breaking in $\overline{B} \to X_u \ell \overline{\nu}$ decays.

Comes at a cost

Similar for Phys.Rev. D86 (2012) 032004

Estimated by variations of **underlying theory assumptions** and **Hybrid** model parameters used to determine (and correct for) selection efficiencies

Tables from Phys. Rev. Lett. 104:021801,2010 and Phys.Rev. D86 (2012) 032004

Phase space restriction	$M_X - q^2$
Data statistical uncertainty	7.1
MC statistical uncertainty	1.1
Track efficiency	0.7
Photon efficiency	1.0
π^0 efficiency	0.9
Particle identification	2.3
K_L production/detection	1.6
K_S production/detection	1.2
Shape function parameters	5.4
Shape function form	1.5
Exclusive $\overline{B} \to X_u \ell \bar{\nu}$	1.9
$s\overline{s}$ production	2.7
B semileptonic branching ratic	1.0
D decays	1.1
$B \to D\ell\nu$ form factor	0.4
$B \to D^* \ell \nu$ form factor	0.7
$B \to D^{**} \ell \nu$ form factor	0.9
$B \to D^{**}$ reweighting	1.9
m_{ES} background subtraction	1.9
combinatorial backg.	1.0
Total semileptonic BF	1.4
Total systematic uncertainty	8.4
Total experimental uncertainty	11.0

MC Mix of res. and non-resonant processes

non-resonant X_u fragmented via JETSET / Pythia

More about how this is made:

https://indico.fnal.gov/event/44316/contributions/190792/attachments/132360/162611/Talk.pdf

$p_\ell^{*B} > 1.0 \; \mathrm{GeV}$	$\Delta {\cal B} / {\cal B}$ (%)
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2
$(D^{(*)}\ell\nu)$ form factors	1.2
$\mathcal{B}(D^{**}e\nu)$ & form factors	0.2
$B \to X_u \ell \nu$ (SF)	3.6
$B \to X_u \ell \nu \ (g \to s \bar{s})$	1.5
$\mathcal{B}(B o \pi/ ho/\omega\ell u)$	2.3
${\cal B}(B o\eta,\ \eta'\ell u)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ un-meas.	2.9
Cont./Comb.	1.8
Sec./Fakes/Fit.	1.0
PID/Reconstruction	3.1
BDT	3.1
Systematics	8.1
Statistics	8.8

Future directions:

Focus on experimental **most sensitive region** (high E_{ℓ}^{B})

Determine Shape-Function in a data-driven way

P. Gambino, K. Healey, C. Mondino, Phys. Rev. D 94, 014031 (2016), [arXiv:1604.07598]

F. Bernlochner, H. Lacker, Z. Ligeti, I. Stewart, F. Tackmann, K. Tackmann Submitted to PRL [arXiv:2007.04320]

9

Future directions:

$$M_{
m bc} = \sqrt{E_{
m beam}^2 - p_B^2}$$

https://indico.cern.ch/event/655447/contributions/2742185/attachments/1552413/2439489/adversarial_networks_in_belle2-iml.pdf

Combined incl. and excl. $|V_{ub}|$

Can we measure both at the same time?

Asimov Fit

Fermilab/MILC Phys. Rev. D 92, 014024 (2015) arXiv:1503.07839

-0.10

0.24

0.20

0.10

0.04

-0.16 0.29

-0.70

-0.65

-0.25

-0.57

-0.69

-0.46

0.63

0.57

0.23

0.54

0.64

0.43

0.58

0.51

0.22

0.52

0.62

0.41

0.53

0.49

0.18

0.40

0.50

0.34

0.44

0.21

0.60

0.65

1.00

0.97

0.29

0.66

0.87

0.97

1.00

0.30

0.65

0.80

0.44 0.62 0.47 -0.10 0.08

0.29

0.30

1.00

0.07

0.24 1.00

0.66

0.65

0.60

0.87

0.80

0.24 0.07 -0.10

0.60

1.00

0.70

0.62

0.47

0.08

0.70

1.00

Individual components seem to separate well in Asimov with made-up (but semi-realistic) distributions

Exclusive $|V_{ub}|$ and $|V_{cb}|$

Combined Measurements of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

(Tagged) Measurements of $B \to D\ell \bar{\nu}_{\ell}$ suffer from large down-feed from $B \to D^*\ell \bar{\nu}_{\ell}$

Combined Fits of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

Phys. Rev. D 95, 115008 (2017), [arXiv:1703.05330]

Interesting if heavy quark symmetry inspired Form Factors are used:

$$\hat{h}(w) = h(w) / \xi(w)$$

$$\hat{h}_{Q} = 1 + \hat{\alpha}_{s} \left[C_{V_{1}} + \frac{w+1}{2} (C_{V_{2}} + C_{V_{3}}) \right] + (\varepsilon_{c} + \varepsilon_{b}) \hat{L}_{1},
\hat{h}_{-} = \hat{\alpha}_{s} \frac{w+1}{2} (C_{V_{2}} - C_{V_{3}}) + (\varepsilon_{c} - \varepsilon_{b}) \hat{L}_{4},
\hat{h}_{V} = 1 + \hat{\alpha}_{s} C_{V_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),
\hat{h}_{A_{1}} = 1 + \hat{\alpha}_{s} C_{A_{1}} + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{5} \frac{w-1}{w+1}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4} \frac{w-1}{w+1}),
\hat{h}_{A_{2}} = \hat{\alpha}_{s} C_{A_{2}} + \varepsilon_{c} (\hat{L}_{3} + \hat{L}_{6}),
\hat{h}_{A_{3}} = 1 + \hat{\alpha}_{s} (C_{A_{1}} + C_{A_{3}}) + \varepsilon_{c} (\hat{L}_{2} - \hat{L}_{3} + \hat{L}_{6} - \hat{L}_{5}) + \varepsilon_{b} (\hat{L}_{1} - \hat{L}_{4}),$$

This links dynamics of $B \to D \ell \bar{\nu}_{\ell} \& B \to D^* \ell \bar{\nu}_{\ell}$

Example fit for leading IW function and sub-leading parameters

	1
$ V_{cb} \times 10^3$	38.8 ± 1.2
$\mathcal{G}(1)$	1.055 ± 0.008
$\mathcal{F}(1)$	0.904 ± 0.012
$\bar{ ho}_*^2$	1.17 ± 0.12
$\hat{\chi}_2(1)$	-0.26 ± 0.26
$\hat{\chi}_2'(1)$	0.21 ± 0.38
$\hat{\chi}_3'(1)$	0.02 ± 0.07
$\eta(1)$	0.30 ± 0.04
$\eta'(1)$	0 (fixed)
$m_b^{1S}[{\rm GeV}]$	4.70 ± 0.05
$\delta m_{bc} [{\rm GeV}]$	3.40 ± 0.02

Careful with unitarity constraints in experimental Fits

Unitarity constraints are interesting ingredients to incorporate into fits, but one has to be careful

$$g(z) = \frac{1}{P_V(z)\phi_g(z)} \sum_n a_n^g z^n , \qquad \sum_n |a_n^g|^2 \le 1 ,$$
$$F_A(z) = \frac{1}{P_A(z)\phi_{F_A}(z)} \sum_n a_n^{F_A} z^n , \qquad \sum_{F_A,n} |a_n^{F_A}|^2 \le 1 ,$$

Two problems:

1) If included, they can strongly constrain higher order terms (a priori fine); but one has to be careful as the uncertainties on these will then **highly depend** on the **prior probability.**

At best this introduces an undesired dependence on prior, at worst it could bias results.

2) If one averages several results, such UT constraints should be included **only once** (as otherwise one starts to use this prior *n* times if one averages *n* measurements). **Safest way** is if **measurements** provide **results** always (also) **without** UT constraints applied to keep them "**future proof**" Possible prior choices to enforce that the quadratic sum of parameters remains smaller than unity

Wrap-Up

Vxb over time: Markus Prim

Example implementation for $b \rightarrow u \ell \bar{\nu}_{\ell}$ Hybrid https://github.com/b2-hive/eFFORT

Example implementation for HQET FFs: https://hammer.physics.lbl.gov/

Also check out RooHammerModel: https://arxiv.org/abs/2007.12605

More Information

Wrong E_{γ} spectrum without $B
ightarrow X_s \gamma$

New results from Belle II expected this summer; first time $|V_{cb}|$ from q^2 -Moments

Inclusive $|V_{cb}|$

