

How can we improve $\left|V_{x b}\right|$ Determinations?
Snowmass 2021: Theory meets experiment on $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$



## Caveats on inclusive $\left|V_{u b}\right|$



## Phase-Space Coverage



Cut on $E_{\ell}^{B}, M_{X}$

Theory error gets large Experimental uncert. small
high cut

Theory error gets small Experimental uncert. large
low cut

## Phase-Space Coverage



Clear separation of $b \rightarrow u \ell \bar{\nu}_{\ell}$ from
$b \rightarrow c \ell \bar{\nu}_{\ell}$ only possible in corners of phase-space

(Often) use hadronic tagging \& multivariate (or regular) background suppression


Higher multiplicity Often come with charged and neutral Kaons D* decays (slow pions) (Slightly lower $E_{e}$ )

Direct cuts on $m_{X}, E_{\ell}$ problematic (i.e. direct shape-function dependence)

## Ok, but what's the problem?


#### Abstract

We present the partial branching fraction for inclusive charmless semileptonic $B$ decays and the corresponding value of the CKM matrix element $\left|V_{u b}\right|$, using a multivariate analysis method to access $\sim 90 \%$ of the $B \rightarrow X_{u} \ell \nu$ phase space. This approach dramatically reduces the theoretical uncertainties from the $b$-quark mass and non-perturbative QCD compared to all previous inclusive measurements. The results are based on a sample of 657 million $B \bar{B}$ pairs collected with the Belle detector. We find that $\Delta \mathcal{B}\left(B \rightarrow X_{u} \ell \nu ; p_{\ell}^{* B}>1.0 \mathrm{GeV} / c\right)=1.963 \times\left(1 \pm 0.088_{\text {stat. }} \pm 0.081_{\text {sys. }}\right) \times 10^{-3}$. Corresponding values of $\left|V_{u b}\right|$ are extracted using several theoretical calculations.


We report measurements of partial branching fractions for inclusive charmless semileptonic $B$ decays $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$, and the determination of the CKM matrix element $\left|V_{u b}\right|$. The analysis is based on a sample of 467 million $\Upsilon(4 S) \rightarrow B \bar{B}$ decays recorded with the BABAR detector at the PEP-II $e^{+} e^{-}$storage rings. We select events in which the decay of one of the $B$ mesons is fully reconstructed and an electron or a muon signals the semileptonic decay of the other $B$ meson. We measure partial branching fractions $\Delta \mathcal{B}$ in several restricted regions of phase space and determine the CKM element $\left|V_{u b}\right|$ based on different QCD predictions. For decays with a charged lepton momentum $p_{\ell}^{*}>1.0 \mathrm{GeV}$ in the $B$ meson rest frame, we obtain $\Delta \mathcal{B}=\left(1.80 \pm 0.13_{\text {stat. }} \pm 0.15_{\text {sys. }} \pm 0.02_{\text {theo. }}\right) \times 10^{-3}$ from a fit to the two-dimensional $M_{X}-q^{2}$ distribution. Here, $M_{X}$ refers to the invariant mass of the final state hadron $X$ and $q^{2}$ is the invariant mass squared of the charged lepton and neutrino. From this measurement we extract $\left|V_{u b}\right|=\left(4.33 \pm 0.24_{\text {exp. }} \pm 0.15_{\text {theo. }}\right) \times 10^{-3}$ as the arithmetic average of four results obtained from four different QCD predictions of the partial rate. We separately determine partial branching fractions for $\bar{B}^{0}$ and $B^{-}$decays and derive a limit on the isospin breaking in $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays.
reduced
to an acceptable level



The cost: model dependence


Similar for Phys.Rev. D86 (2012) 032004

Estimated by variations of underlying theory assumptions and Hybrid model parameters used to determine (and correct for) selection efficiencies

Tables from Phys. Rev. Lett. 104:021801,2010 and Phys.Rev. D86 (2012) 032004

| Phase space restriction | $M_{X}-q^{2}$ |
| :--- | :---: |
| Data statistical uncertainty | 7.1 |
| MC statistical uncertainty | 1.1 |
|  | 0.7 |
| Track efficiency | 1.0 |
| Photon efficiency | 0.9 |
| $\pi^{0}$ efficiency | 2.3 |
| Particle identification | 1.6 |
| $K_{L}$ production/detection | 1.2 |
| $K_{S}$ production/detection | 5.4 |
|  | 1.5 |
| Shape function parameters | 1.9 |
| Shape function form | 2.7 |
| Exclusive $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ | 1.0 |
| $s \bar{s}$ production | 1.1 |
|  |  |
| $B$ semileptonic branching ratic | 0.4 |
| $D$ decays | 0.7 |
| $B \rightarrow D \ell \nu$ form factor | 0.9 |
| $B \rightarrow D^{*} \ell \nu$ form factor | 1.9 |
| $B \rightarrow D^{* *} \ell$ form factor |  |
| $B \rightarrow D^{* *}$ reweighting | 1.9 |
| Total semileptonic BF | 1.0 |
| $T_{E S}$ background subtraction systematic uncertainty | 8.4 |
| Total experimental uncertainty | 11.0 |

MC Mix of res. and non-resonant processes
non-resonant $X_{u}$ fragmented via JETSET / Pythia

| $p_{\ell}^{* B}>1.0 \mathrm{GeV}$ | $\Delta \mathcal{B} / \mathcal{B}(\%)$ |
| :--- | :---: |
| $\mathcal{B}\left(D^{(*)} \ell \nu\right)$ | 1.2 |
| $\left(D^{(*)} \ell \nu\right)$ form factors | 1.2 |
| $\mathcal{B}\left(D^{* *} e \nu\right) \&$ form factors | 0.2 |
| $B \rightarrow X_{u} \ell \nu(\mathrm{SF})$ | 3.6 |
| $B \rightarrow X_{u} \ell \nu(g \rightarrow s \bar{s})$ | 1.5 |
| $\mathcal{B}(B \rightarrow \pi / \rho / \omega \ell \nu)$ | 2.3 |
| $\mathcal{B}\left(B \rightarrow \eta, \eta^{\prime} \ell \nu\right)$ | 3.2 |
| $\mathcal{B}\left(B \rightarrow X_{u} \ell \nu\right)$ un-meas. | 2.9 |
| Cont./Comb. | 1.8 |
| Sec./Fakes/Fit. | 1.0 |
| PID/Reconstruction | 3.1 |
| BDT | 3.1 |
| Systematics | 8.1 |
| Statistics | 8.8 |



## Future directions:

Focus on experimental most sensitive region (high $E_{\ell}^{B}$ )
Determine Shape-Function in a data-driven way



F. Bernlochner, H. Lacker, Z. Ligeti, I. Stewart, F. Tackmann, K. Tackmann

Submitted to PRL
[arXiv:2007.04320]


## Avoid Efficiency shaping



Deep Continuum Suppression (0.2013)


Feature Drop (0.0935)


Adversarial Network (0.0213)



## Combined incl. and excl. $\left|V_{u b}\right|$



## Can we measure both at the same time?





## Exclusive $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$



## Combined Measurements of $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$

(Tagged) Measurements of $B \rightarrow D \ell \bar{\nu}_{\ell}$ suffer from large down-feed from $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$


# Combined Fits of $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ 

Interesting if heavy quark symmetry inspired Form Factors are used:

$$
\begin{aligned}
& \hat{h}(w)=h(w) / \xi(w) \longleftarrow \quad \begin{array}{l}
\text { Leading Isgur-Wise } \\
\text { function }
\end{array}
\end{aligned}
$$

This links dynamics of
$B \rightarrow D \ell \bar{\nu}_{\ell} \& B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
Example fit for leading IW function and sub-leading parameters

| $\left\|V_{c b}\right\| \times 10^{3}$ | $38.8 \pm 1.2$ |
| :---: | :---: |
| $\mathcal{G}(1)$ | $1.055 \pm 0.008$ |
| $\mathcal{F}(1)$ | $0.904 \pm 0.012$ |
| $\bar{\rho}_{*}^{2}$ | $1.17 \pm 0.12$ |
| $\hat{\chi}_{2}(1)$ | $-0.26 \pm 0.26$ |
| $\hat{\chi}_{2}^{\prime}(1)$ | $0.21 \pm 0.38$ |
| $\hat{\chi}_{3}^{\prime}(1)$ | $0.02 \pm 0.07$ |
| $\eta(1)$ | $0.30 \pm 0.04$ |
| $\eta^{\prime}(1)$ | $0($ fixed $)$ |
| $m_{b}^{1 S}[\mathrm{GeV}]$ | $4.70 \pm 0.05$ |
| $\delta m_{b c}[\mathrm{GeV}]$ | $3.40 \pm 0.02$ |




## Careful with unitarity constraints in experimental Fits

Unitarity constraints are interesting ingredients to incorporate into fits, but one has to be careful

$$
\begin{aligned}
g(z) & =\frac{1}{P_{V}(z) \phi_{g}(z)} \sum_{n} a_{n}^{g} z^{n}, \quad \sum_{n}\left|a_{n}^{g}\right|^{2} \leq 1 \\
F_{A}(z) & =\frac{1}{P_{A}(z) \phi_{F_{A}}(z)} \sum_{n} a_{n}^{F_{A}} z^{n}, \sum_{F_{A}, n}\left|a_{n}^{F_{A}}\right|^{2} \leq 1
\end{aligned}
$$

Two problems:

1) If included, they can strongly constrain higher order terms (a priori fine); but one has to be careful as the uncertainties on these will then highly depend on the prior probability.

At best this introduces an undesired dependence on prior, at worst it could bias results.
2) If one averages several results, such UT constraints should be included only once (as otherwise one starts to use this prior $n$ times if one averages $n$ measurements). Safest way is if measurements provide results always (also) without UT

Possible prior choices to enforce that the quadratic sum of parameters remains smaller than unity


## Wrap-Up

$\left|V_{\text {ub }}\right|$ Measurements over Time


LHCb and Belle Il will record unprecedented data sets in the next decade

This will allow many new directions; we should carefully rethink the established methods

Example implementation for HQET FFs: https://hammer.physics.lbl.gov/

Also check out RooHammerModel: https://arxiv.org/abs/2007.12605

## More Information



- No theory uncertainties yet

Wrong $E_{\gamma}$ spectrum without $B \rightarrow \boldsymbol{X}_{\boldsymbol{s}} \gamma$


M. Fael, T. Mannel, K. Vos, JHEP 2019, Article number: 177 (2019), [arXiv:1812.07472]

New results from Belle II expected this summer; first time $\left|V_{c b}\right|$ from $q^{2}$-Moments

## Inclusive $\left|V_{c b}\right|$



