$B_c \to D$ form factors $f_{0,+}(q^2)$ from lattice QCD

Laurence Cooper, University of Glasgow with HPQCD Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, 12th January 2021

The heavy-HISQ method

- All sea and valence quarks implemented with HISQ
- Non-perturbative renormalisation of vector current via PCVC
- Simulate at both physical and unphysical m_u, m_d
- ullet Simulate at unphysically light b quarks, inform the limits $\ o m_b$ and $\ o M_{B_c}$
- Probe full range of q^2 for the form factors

See J. Harrison's talk next!

Other recent/ongoing heavy-HISQ work: $B_c \to J/\psi, \, B_s \to D_s^*, \, B_s \to \eta_s, \, B \to K, \, B_c \to B_{s(d)}, \, B_s \to D_s \dots$

Challenges with $B_c \to D$

- Simultaneously access physical m_b (very large) and physical m_u, m_d (very small)
- Light daughter quark, expensive lattice propagators at many momenta
- $q_{\rm max}^2 \approx 19~{\rm GeV^2}$ large (typical of heavy-to-light semileptonic decays), seek q^2 dependence of form factors all the way down to $q^2=0~{\rm GeV^2}$

u d s c b t

(MILC HISQ 2+1+1)

$$m_l \in \{m_s/27.4, m_s/5\}$$

$$m_s, m_c$$
 physical

$$m_c \longleftarrow m_h \longrightarrow m_b$$

$$m_l \in \{m_s/27.4, m_s/5\}$$

 $m_c \longleftarrow m_h \longrightarrow m_b$ m_s, m_c physical

fine $a \approx 0.09 \text{ fm}$ fine-physical superfine ultrafine $a \approx 0.09 \text{ fm}$ $a \approx 0.06 \text{ fm}$ $a \approx 0.045 \text{ fm}$ Finer

$$Z_V\langle D|V_0|H_c
angle$$
 $\langle D|S|H_c
angle$

 $f_{0,+}^{\text{latt}}\left(q^2\right)$

$$f_0(q^2) = P(q^2)^{-1} \sum_{n,r,j,k=0}^{N=3} A_{rijk}^{(n)}(-z)^n \mathcal{N}_{mis}^{(n)} \Delta_{H_l}^{(r)} \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k}$$

Laurence Cooper (HPQCD), Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, 12th January 2021

$$f_0(q^2) = P(q^2)^{-1} \sum_{n,r,j,k=0}^{N=3} A_{rijk}^{(n)}(-z)^n \mathcal{N}_{mis}^{(n)} \Delta_{H_l}^{(r)} \left(\frac{am_h}{\pi}\right)^{2j} \left(\frac{am_c}{\pi}\right)^{2k}$$

Laurence Cooper (HPQCD), Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, 12th January 2021

Laurence Cooper (HPQCD), Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, 12th January 2021

Prospects: improving errors

- Statistics can be increased
- Improve f_+ error at zero-recoil by including the spatial vector current
- Most error coming from reaching the physical b mass
 - More values of am_h on existing lattices...
 - ... and/or simulate at $am_h = am_b$ on the examine lattice

(exafine run in progress for
$$B_c \to D_s$$
) • $a \approx 0.033$ fm • $am_b \approx 0.625$

Prospects: f_T for heavy-to-light decays

• $B_c \to D$ in tandem with a calculation of $f_{0,+,T}$ for $B_c \to D_s$ (via (rare) $b \to s$)

Laurence Cooper (HPQCD), Theory meets experiment on $|V_{ub}|$ and $|V_{cb}|$, 12th January 2021