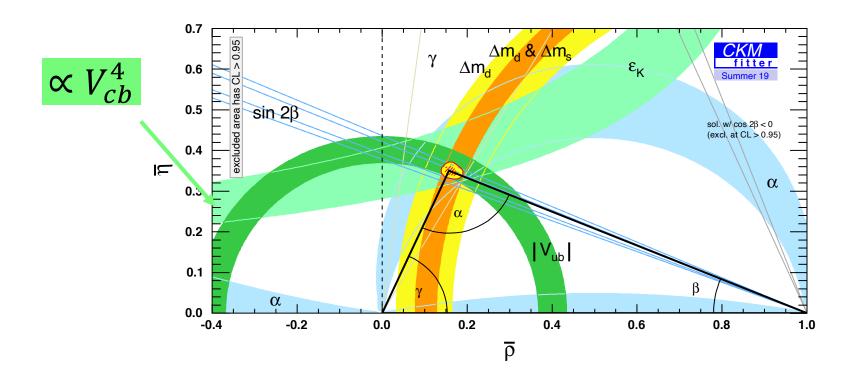
Future experimental prospects

Marie-Hélène Schune

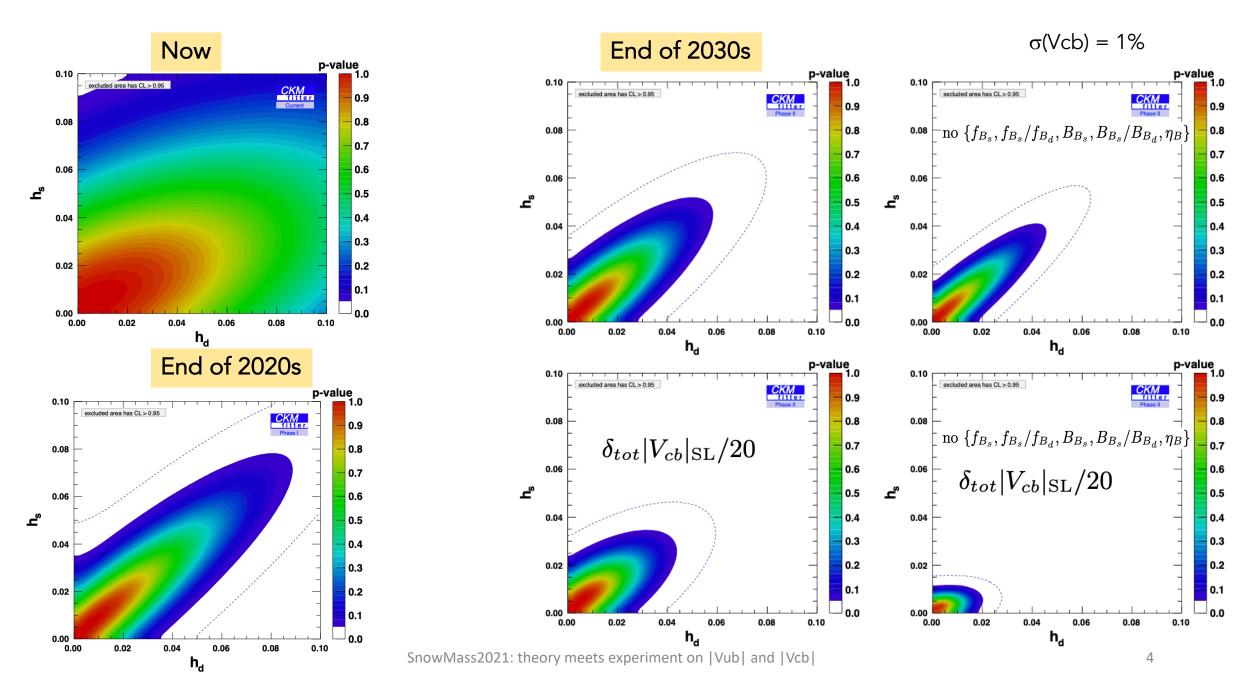
- Motivation and players
- Semi-leptonic b-hadrons decays
- Other ways

Thanks to Racha, Patrick, Florian and Paolo: many plots are coming from their slides.

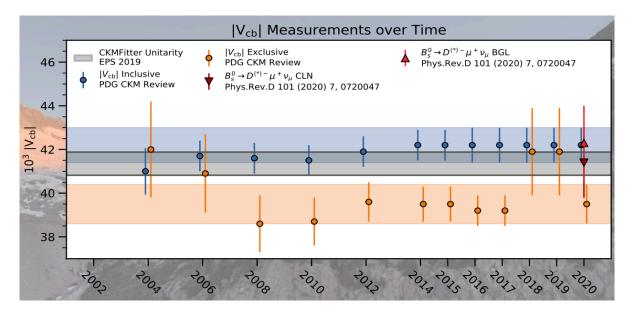

Apologies for all the missing references

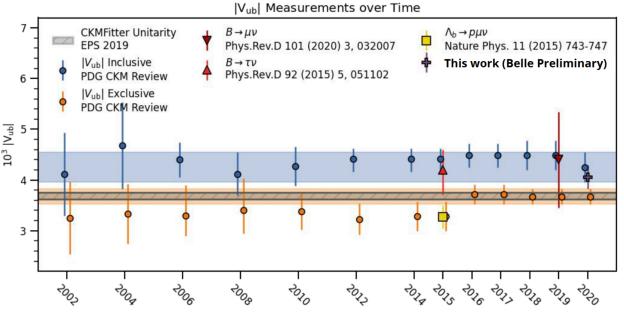
Motivation and players

A precise knowledge is important

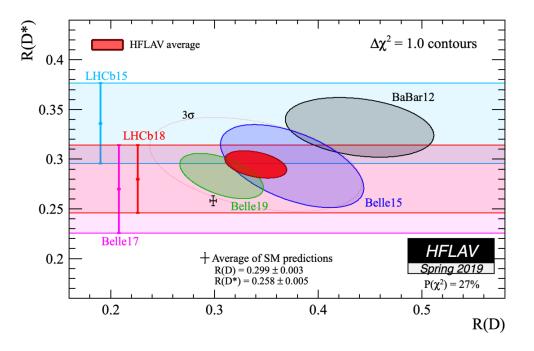

Crucial for indirect NP searches Neutral meson mixing

$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \,\text{TeV}}{\Lambda}\right)^2$$

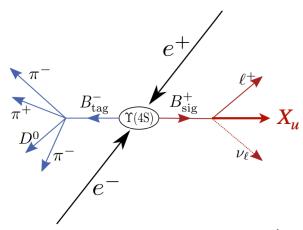

$$\sigma = \arg(C_{ij} \,\lambda_{ij}^{t*}),$$


$$\lambda_{ij}^t = V_{ti}^* \,V_{tj}$$

 $M_{12} = (M_{12})_{SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$



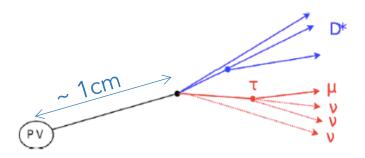
Tensions



Study of B \rightarrow D^(*) I v decays is crucial

BFactories (Belle-II)

Beam energy const. + tag-side → kinematical constraints

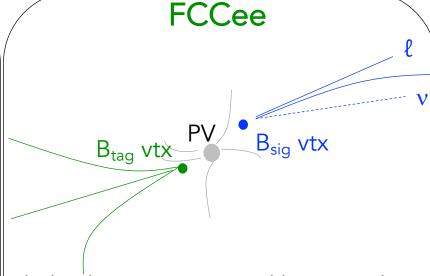

Inclusive decays

Access to absolute BR

BaBar & Belle ~ 1.1 ab-1

Belle-II (ICHEP2020 schedule): 10 ab⁻¹ in 2025, 50 ab⁻¹ in 2031

LHCb


Very large boost→ flight distance reconstruction
→ kinematical constraints

All b-hadrons species

No access to absolute BR

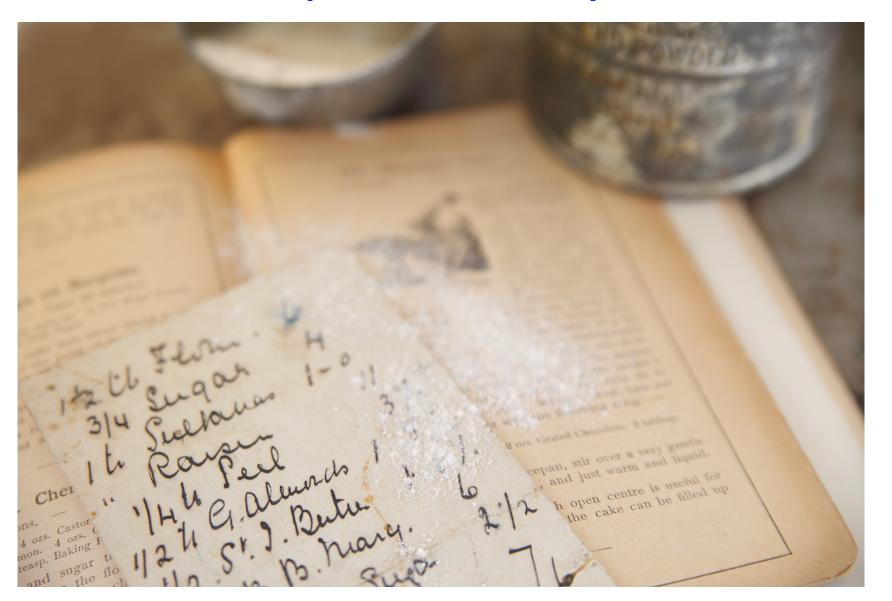
LHCb: 9fb-1 at hand

LHCb-Upgrade 1 (soft. trigger): at the end of Run3 (2024): 23 fb⁻¹ at the end of 2020s: 50 fb⁻¹ LHCb-Upgrade 2: 300 fb⁻¹

Flight distance reco. and beam+other hemisphere

→ kinematical constraints

All b-hadrons species

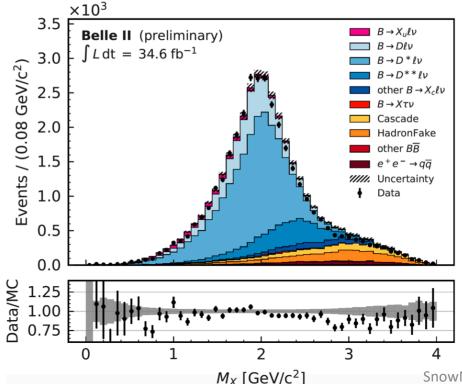

Access to absolute BR

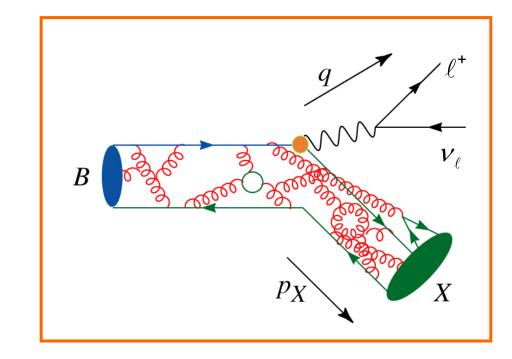
FCCee (from late 2030)

 $5\ 10^{12}\ Z^0$

1.5 108 WW

Traditional recipes: semileptonic decays




|V_{cb}| : inclusive determinations

Not a statistical issue: latest inclusive measurements from 2010

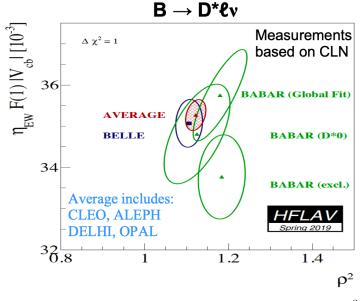
Kinematical constraints from other B reconstruction

New: Belle II analysis with M_x moments

$$|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$$
 PDG

To come : Belle II analysis with q² moments

$|V_{ch}|$: exclusive determinations

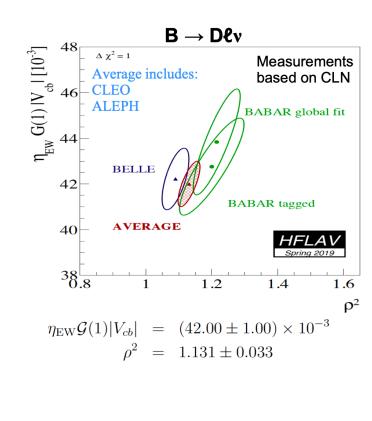

Quite a bunch of recent results

$$B \rightarrow D^{(*)}|_{V}$$

 $B \rightarrow D^*lv$ extremely clean samples, $B \rightarrow Dlv$ less clean (D^* feed-down)

FF parametrization

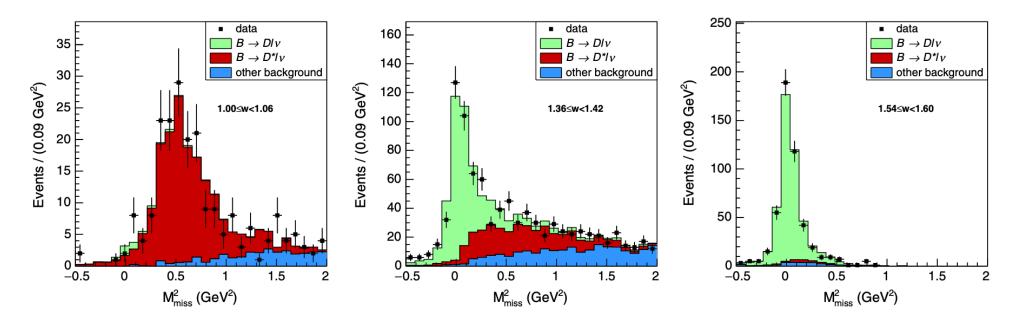
Measurement of the differential rates



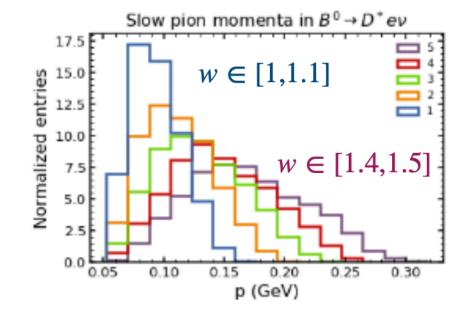
$$\eta_{\text{EW}} \mathcal{F}(1) |V_{cb}| = (35.27 \pm 0.38) \times 10^{-3}$$

$$\rho^2 = 1.122 \pm 0.024$$

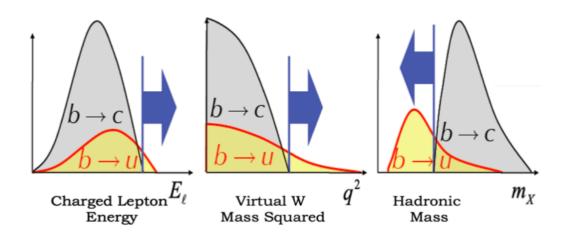
$$R_1(1) = 1.270 \pm 0.026$$


$$R_2(1) = 0.852 \pm 0.018$$

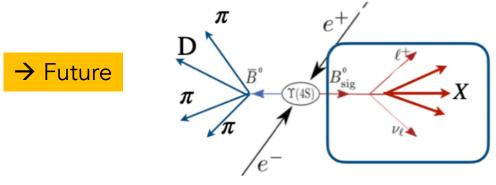
$$|V_{cb}| = (38.76 \pm 0.42_{exp} \pm 0.55_{th}) \cdot 10^{-3}$$


$$|V_{cb}| = (38.76 \pm 0.42_{exp} \pm 0.55_{th}) \cdot 10^{-3} | |V_{cb}| = (39.58 \pm 0.94_{exp} \pm 0.37_{th}) \cdot 10^{-3} |$$

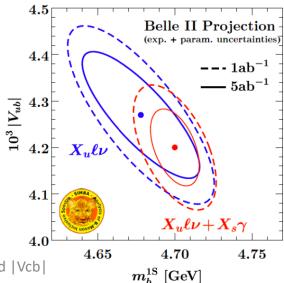
Belle B→ Dlv


In the (interesting) region w = 1, the soft pion from D* decay is particularly soft : inclusive reconstruction?

Florian Bernlochner

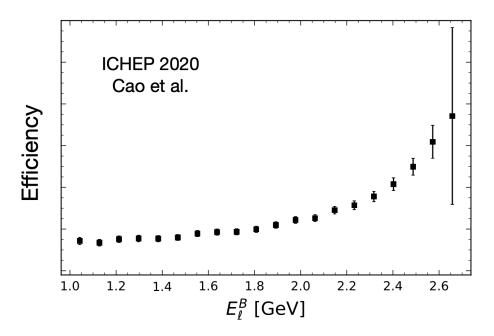

Combined HQET fits of $B \rightarrow D^*lv$ and $B \rightarrow Dlv$

IV_{ub}I : inclusive determinations

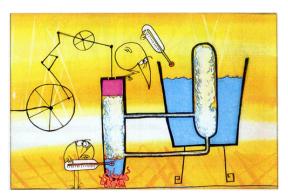


HQET breaks down due to experimental cuts

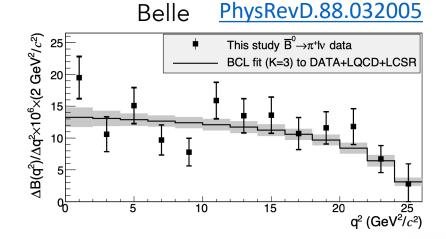
More information, higher purity reconstructing the other B.

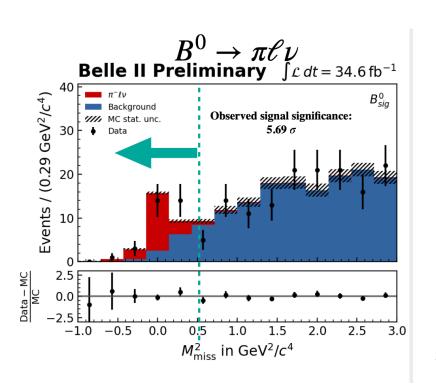

Global fit combining B $o X_u l \nu$ and B $o X_s \gamma$

SnowMass2021: theory meets experiment on |Vub| and |Vcb|


	Statistical	Systematic (reducible, irreducible)	Total Exp	Theory	Total
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
				probably conservative	

Even with modern technics, the reduction of the huge b->c background has significant consequences on the systematics uncertainties


Use more modern technics:


- Adversarial Networks
- Aspiration Networks with which one can explicitly avoid to shape a variable of interest.

|V_{ub}| : exclusive determinations

Differential BF

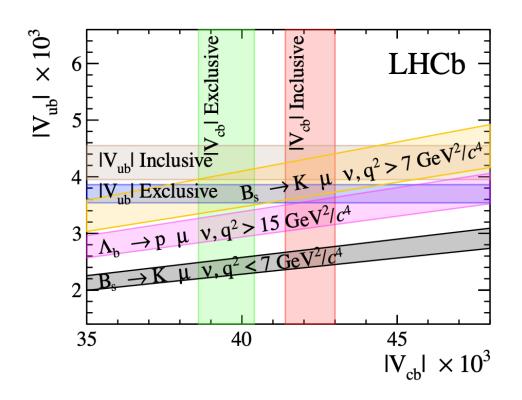
IV_{ub}I/ IV_{cb}I by LHCb

$$\frac{\mathcal{B}(\Lambda_b \to \rho \mu^- \overline{\nu}_\mu)_{q^2 > 15 \, \text{GeV}^2/c^4}}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu \nu)_{q^2 > 7 \, \text{GeV}^2/c^4}}$$

$$\frac{\mathcal{B}(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu})_{q^{2} < 7}}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{\text{Full q}^{2}}} \qquad \frac{\mathcal{B}(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu})_{q^{2} > 7}}{\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})_{\text{Full q}^{2}}}$$

$$B_s^0 o K^+ \mu^- \nu$$
 vs $\Lambda_b^0 o p \mu \nu$

Decay	Λ_b^0	B_s^0
theory error	5%	$\sim 5\%$
prod frac	20%	10%
BF	4×10^{-4}	1×10^{-4}
$\mathcal{B}(X_c)$ error	$\pm 5\%$	$\pm 2.8\%$
background	Λ_c^+	$\Lambda_c^+, D_s, D^+, D^0$


Importance of X_c BF measurements

Importance of FF knowledge for the backgrounds

2012 data!

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004$$

$$|V_{ub}|/|V_{cb}|(\mathrm{high}) = 0.0946 \pm 0.0030 \, (\mathrm{stat})^{+ \ 0.0024}_{- \ 0.0025} \, (\mathrm{syst}) \pm 0.0013 \, (D_s) \pm 0.0068 \, (\mathrm{FF})$$

Basem Khanji@ Implications workshop (Fall 2020)

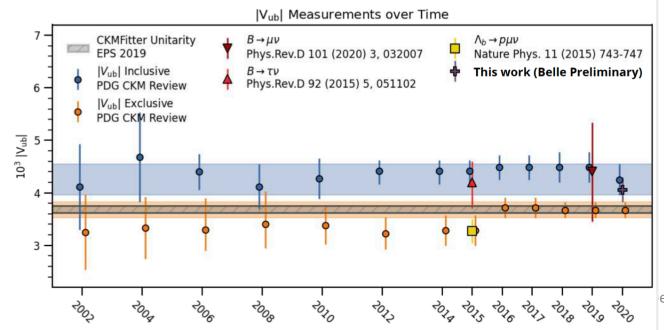
With more statistics: differential measurements with fine q2 binning (very high-q2 region theoretically promising for B_s)

Ultimate experimental precision: 1% probably limited by the tracking efficiency due to different number of charged tracks in the numerator and denominator. Explore different normalisation strategies?

Other ways to access $|V_{cb}|$ and $|V_{ub}|$ decays

SnowMass2021: theory meets experiment on |Vub| and |Vcb|

Purely leptonic decays?


$$\mathcal{B}(B^+ o \ell^+ \nu_\ell) = rac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - rac{m_\ell^2}{m_B^2}
ight)^2 f_B^2 |V_{ub}|^2 \tau_B,$$

In Phys Rev D 101, 032007 (2020) (B $\rightarrow \mu \nu$) fB = 184 (4) MeV

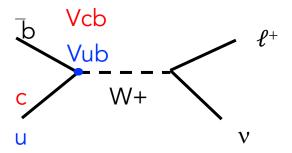
$$|V_{ub}| = (4.4^{+0.8}_{-0.9} \pm 0.4 \pm 0.1) \times 10^{-3},$$

$$N_f = 2 + 1 + 1:$$
 f_B

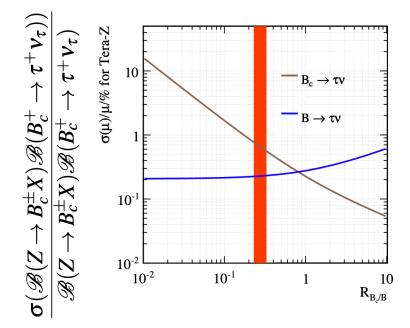
$$f_B = 190.0(1.3) \; \mathrm{MeV}$$

FLAG review (2019)

Theoretically cleaner Experimentally challenging



 $B \rightarrow \mu \nu$ competitive in future?

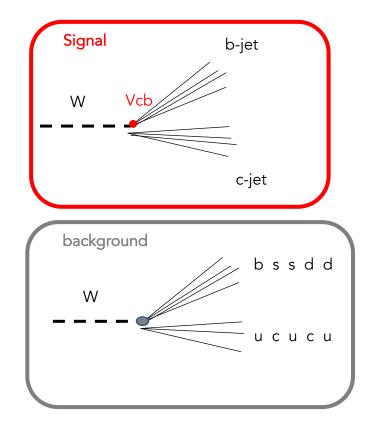

But NP ??!

And FCCee:

$$\frac{N_{B_c}}{N_{B_u}} = \frac{f(b \to B_c)}{f(b \to B_u)} \left| \frac{V_{cb}}{V_{ub}} \right|^2 \left(\frac{f_{B_c}}{f_{B_u}} \right)^2 \frac{m_{B_c}}{m_{B_u}} \frac{\tau_{B_c}}{\tau_{B_u}} \frac{(1 - \frac{m_{\tau}^2}{m_{B_c}^2})^2}{(1 - \frac{m_{\tau}^2}{m_{B_u}^2})^2} \sim 1$$

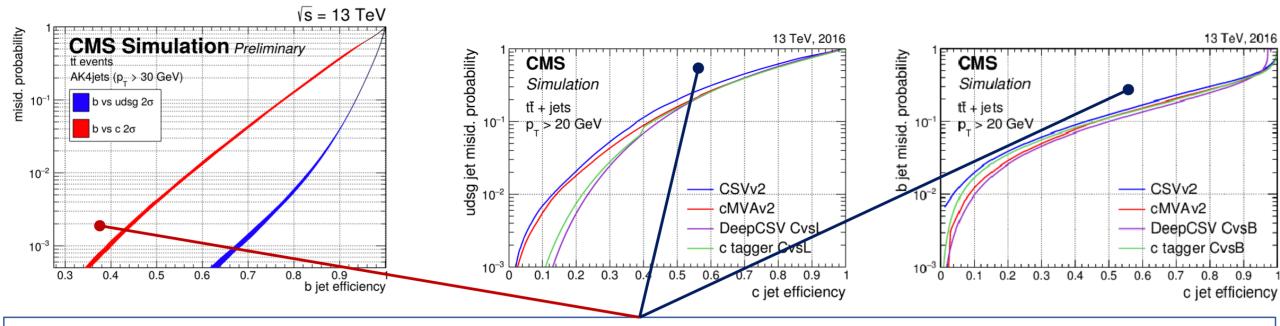
CEPC study (arXiv:2007.08234)

	B_{u}	B_c
Mass	~5280 MeV	~6275 MeV
Lifetime	~1.5 ps	~0.5 ps


 $|V_{cb}|$ at 1% (B_c production knowledge to be improved)

IV_{cb}I : from the W decays ?

Vs=162 GeV : L² 10³⁵ collect 12/ab **45-60 10⁶ WW decays**

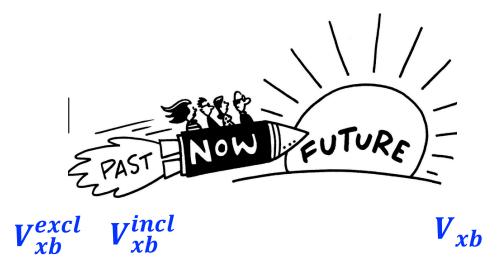

Vs=240 GeV : L~0.7 10³⁵ collect 5/ab **80 10⁶ WW decays**

Vs=365 GeV : L[~] 10³⁴ collect 1.65/ab **20 10⁶ WW decays**

$$|V_{cb}| = (41.0 \pm 1.4) \times 10^{-3} \implies BR = 5.6 \ 10^{-4} \ (1.7 \ 10^{5} \ W \implies cb \ @FCCee)$$

 $|V_{ub}| = (3.82 \pm 0.24) \times 10^{-3} \implies BR = 4.9 \ 10^{-6} \ (1.5 \ 10^{3} \ W \implies ub \ @FCCee)$

Name of the game: b-jet, c-jet, light jet flavor tagging



First tag ε_b =40% and ε_c =10⁻³ ε_{uds} =10⁻⁵ Second tag with ε_c =60% and ε_b =0.1 ε_{uds} =0.2 @FCCee: N(W \rightarrow cs,cd) \approx 20k N(W \rightarrow cb) \approx 50k \rightarrow direct Δ |V_{cb}| (stat) (FCCee) \rightarrow 0.2%(rel)

Summary

Most of the progresses: close theoretical/experimental collaborations

- Importance of X_c BF knowledge (BES3, Belle II)
- Need to better study the anatomy of B \rightarrow DX ℓ ν decays
- Larger samples \rightarrow differential measurements with fine binning, use only the cleaner modes
- |V_{cb}|
 - currently limited by theoretically knowledge at 1.5 2%.
 - Use of W decays with FCCee: below 1%?
 - Pure B_c leptonic decays (CEPC study) at 1 % ?
- IV_{ub}I
 - Belle-II: 1-2 % with semileptonic decays
 - IV_{ub}I/IV_{cb}I with 1% precision (Upgrade II dataset) ?
 - Pure B+ leptonic decays: 1% (Belle2, FCCee)?

