

Flux shape uncertainties in cross-section data & model comparisons

CEWG Meeting

2020-11-02

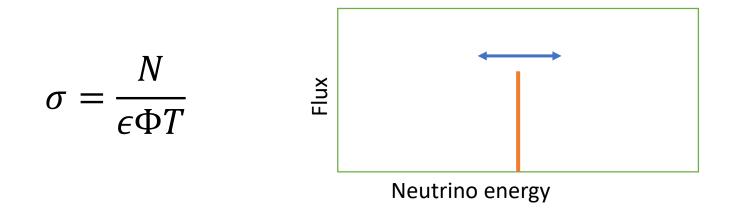
Lukas Koch

Status quo

- Cross section measurements are "flux integrated"
 - Measured cross sections are valid only for a specific neutrino flux
- Unfolding procedure uses flux uncertainty to evaluate effect on results → part of covariance matrix
- Models use nominal flux for cross-section predictions
 - As far as I know
- χ2 is calculated using nominal model prediction and covariance matrix
 - Assumption: Flux uncertainties are included in covariance matrix

Ν

- Claim: Flux shape uncertainty is not (fully) included in the covariance matrix of the unfolded result when doing model comparisons
- Instructive example: "perfect" 1-bin measurement
 - All efficiencies perfectly flat
 - No background
 - Monochromatic neutrino beam with perfectly known intensity
 - Only systematic uncertainty is neutrino energy

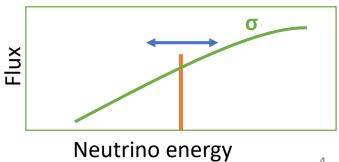


Problem: Flux shape uncertainty

• Variation of beam energy does not vary the result!

$$\sigma = \frac{N}{\epsilon \Phi T} \stackrel{syst.var.}{=} const$$

- Systematic uncertainty of result = 0
- Result is still correct
 - We know the flux integrated cross section very well
 - We just do not know the flux shape very well
- When using only nominal flux for model comparison the flux shape uncertainty is ignored
 - Simple example: cross section proportional to E
 - Should introduce an additional uncertainty proportional to neutrino energy uncertainty



- Measurement provides best guess at cross-section integrated over the *real* flux profile
- Model predictions are calculated using the *nominal* flux profile
- Difference between nominal and real flux shapes is not taken into account when comparing the two
 - What we measure and what we compare it to are different things!
- Perfect monochromatic beam example:
 - Measurement: $\sigma(E_{real})$, well known
 - Model: $\sigma(E_{nominal})$, perfectly known
 - $\Delta E = E_{real} E_{nominal}$, not well known, ignored in comparison

- 1st Approach
 - Measure XSEC in (unknown) real flux
 - Provide flux & covariance w/ XSEC correlations
 - Propagate shape uncertainties in model predictions
 - Extra work at point of model comparison
 - (\mathbf{R}) •

2nd Approach

- Measure XSEC in fixed *reference* flux
- Use varied assumed real flux to extrapolate measurement to reference flux
 - Needs a XSEC model to do so
- Degrades discrimination power of measurement $\sigma' = \frac{N(\theta, \phi')}{T(\theta)\Phi(\phi')}$
 - By covering different E-dependences
- Also 🛞

$$\sigma = \frac{N(\boldsymbol{\theta}, \boldsymbol{\phi})}{T(\boldsymbol{\theta}) \Phi(\boldsymbol{\phi})}$$

$$\sigma' = \frac{N(\boldsymbol{\theta}, \boldsymbol{\phi})}{T(\boldsymbol{\theta}) \Phi(\boldsymbol{\phi}')} \frac{N_{\mathrm{MC}}(\boldsymbol{\theta}, \boldsymbol{\phi}')}{N_{\mathrm{MC}}(\boldsymbol{\theta}, \boldsymbol{\phi})}$$

- Comparing a first-approach result with a model at only a single flux (as you would do with a second-approach measurement) is wrong!
 - It ignores flux shape errors
 - Amount of wrongness depends on size of flux shape effect compared to all other uncertainties → non-negligible!
 - Extra 🛞 🛞 🛞
- Tried to figure out how to do first-approach and secondapproach measurements with fitted and "classical" unfolding schemes
 - \rightarrow [arXiv:2009.00552] \leftarrow
 - Includes "recipes" we hope can be adapted to many different experiments

$$\sigma' = \frac{N(\boldsymbol{\theta}, \boldsymbol{\phi}')}{T(\boldsymbol{\theta})\Phi(\boldsymbol{\phi}')}$$

- Pretty confident about the how
 - \rightarrow [arXiv:2009.00552] \leftarrow
- Now need to decide on the what
- What kind of results do we want to release?
- What kind of results do our "customers" need/want?
- Four kinds of unfolded results to choose from:
 - Regularised vs unregularized
 - 1st approach vs 2nd approach

4 kinds of XSEC results 1/2

UNIVERSITY OF OXFORD

- Regularised
 - Introduces some bias
 - Depending on regularisation strength
 - Allows (some) visual interpretation of results
- Unregularised
 - Unbiased
 - Visual interpretation of result often not reliable
 - Strong bin-to-bin anticorrelations
 - Need to use provided covariance matrix to draw conclusions

4 kinds of XSEC results 2/2

UNIVERSITY OF OXFORD

- 1st approach (XSEC in real flux)
 - No model-dependent flux corrections
 - Allows direct comparison of *measurements* in same flux
 - Model predictions need flux uncertainty
 - E.g. calculate prediction for many flux throws
 - Would need to be correlated to XSEC covariance!
 - At least if there is considerable flux shape error in the result
- 2nd approach (XSEC extrapolated to reference flux)
 - Less work for model builders
 - Need only one prediction in single reference flux
 - Model-dependent flux extrapolation
 - Uses neutrino-energy dependence of the model
 - Reduced statistical power
 - Need to cover different possible energy-dependencies
 - Any model only has one specific dependency
 - The others add "unnecessary" contributions to the covariance

	1 st approach	2 nd approach
Unregularised	Least bias Best power No chi-by-eye Most difficult to use and interpret	No regularisation bias No chi-by-eye Flux extrapolation bias Diminished power
Regularised	Good power No extrapolation bias Regularisation bias Models need flux uncertainty	Easiest to use and interpret (by eye) Most bias Least power

	1 st approach	2 nd approach
Unregularised	Least bias Best power No chi-by-eye Most difficult to use and interpret	No regularisation bias No chi-by-eye Flux extrapolation bias Diminished power
Regularised	Good power No extrapolation bias Regularisation bias Models need flux uncertainty	Easiest to use and interpret (by eye) Most bias Least power

Most old results

	1 st approach	2 nd approach
Unregularised	Least bias Best power No chi-by-eye Most difficult to use and interpret	No regularisation bias No chi-by-eye Flux extrapolation bias Diminished power
Regularised	Good power No extrapolation bias Regularisation bias Models need flux uncertainty	Easiest to use and interpret (by eye) Most bias Least power
	Most old results	

Most of our recent results

	1 st approach	2 nd approach
Unregularised	Least bias Best power No chi-by-eye Most difficult to use and interpret	No regularisation bias No chi-by-eye Flux extrapolation bias Diminished power
Regularised	Good power No extrapolation bias Regularisation bias Models need flux uncertainty	Easiest to use and interpret (by eye) Most bias Least power
	Most old results	How almost all results are treated

Most of our recent results

	1 st approach	2 nd approach
Unregularised	Least bias Best power No chi-by-eye Most difficult to use and interpret	No regularisation bias No chi-by-eye Flux extrapolation bias Diminished power
Regularised	Good power No extrapolation bias Regularisation bias Models need flux uncertainty	Easiest to use and interpret (by eye) Most bias Least power
	Most of our recent recults	How almost all results are treated

Most of our recent results

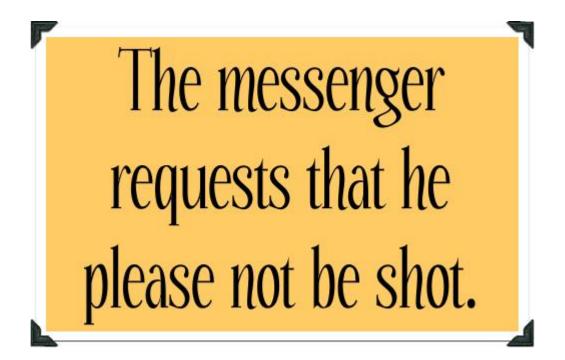
- What do we want to provide in the future?
 - More than 2 versions of same measurement too confusing?
 - One pretty and one technical result? R2 and U1?
 - U1 too complicated? U2 instead?

- Either "best fit" parameters or nominal
- 1st approach measurements also need a public flux covariance matrix
 - Either "post fit" or "pre fit" (nominal)
 - Needs to be correlated with XSEC result!
 - Each XSEC result needs to provide its own XSEC-flux covariance matrix

Reality check

- "All our model comparisons are wrong"
 - But *how* wrong?
- Flux shape has some influence on result
 - Efficiencies are not perfectly flat
 - BG depends on flux shape
 - Adds "something" to covariance matrix
- Flux shape is not dominant systematic (probably?)
 - Has flux shape effect on model predictions been tested?
- Reality somewhere between "effect of flux shape is completely negligible" and "our χ2 are completely wrong"
 - How do we know where we are?
 - See Stephen's presentation

Questions?



Comments?

Backup

UNIVERSITY OF OXFORD

- Perfect two-bin measurement
 - 2 flux bins, 2 corresponding signal bins, no smearing, no inefficiency
 - Only flux and template weights

$$N_j = N_j^0 \phi_j c_j \qquad j = 1,2$$

- Fitter will adjust weights to make N_i fit the data
 - Every change in flux weight can be compensated by template weights → flux and template weights are anti-correlated
 - Constraint of weights comes only from flux prior
- Resulting best fit point and covariance describe what parameter combinations are compatible with the data

• Flux integrated XSEC extracted by drawing from post-fit parameters and calculating

$$\sigma_{j} = \frac{N_{j}}{T\Phi} = \frac{N_{j}^{0}\phi_{j}c_{j}}{T(\Phi_{1}^{0}\phi_{1} + \Phi_{2}^{0}\phi_{2})}$$

- Each throw corresponds to one possible reality or universe
- Number of events N_j is almost constant by construction
- If total flux Φ is also constant, error on XSEC is small(\rightarrow 0)
 - $\sigma_i \coloneqq$ Flux integrated XSEC in real flux
 - Flux and template weight uncertainties cancel
 - Don't care what real flux actually is
 - Correct result, but cannot be compared to model without model flux variations
 - Problem: How to not double count flux variations?

- UNIVERSITY OF OXFORD
- $\sigma_j \rightarrow \sigma_j' \coloneqq$ Flux integrated XSEC in best fit flux
 - Cross section in specific flux "once removed from reality"
 - Do care about what the real flux actually is
 - Would allow direct comparisons of models @ best fit flux
- For each throw (possible reality) calculate XSEC at that flux

$$\sigma_{j}' = \frac{N_{j}'}{\Phi'} = \frac{N_{j}^{0}\phi_{j}'c_{j}}{\Phi_{1}^{0}\phi_{1}' + \Phi_{2}^{0}\phi_{2}'} = \sigma_{j}\frac{\Phi}{\Phi'}\frac{\phi_{j}'}{\phi_{j}}$$

- Ignore thrown flux weights ϕ
- Set flux weight in calculation to best fit value ϕ'
- Best fit point is identical by definition $(\phi' = \hat{\phi})$ $\hat{\sigma}'_j = \hat{\sigma}_j$
- Covariance is different, as flux and template weights no longer cancel

$$cov(\sigma') \neq cov(\sigma)$$

Could go further

- UNIVERSITY OF OXFORD
- $\sigma'_j \rightarrow \sigma''_j \coloneqq$ Flux integrated XSEC in nominal flux
 - Cross section in specific flux "twice removed from reality"
 - Do care about what the real flux actually is
 - Would allow direct comparisons of models @ nominal flux
- For each throw (possible reality) calculate XSEC at that flux

$$\sigma_{j}^{\prime\prime} = \frac{N_{j}^{\prime\prime}}{\Phi^{\prime\prime}} = \frac{N_{j}^{0}\phi_{j}^{\prime\prime}c_{j}}{\Phi_{1}^{0}\phi_{1}^{\prime\prime} + \Phi_{2}^{0}\phi_{2}^{\prime\prime}} = \sigma_{j}\frac{\Phi}{\Phi^{\prime\prime}}\frac{\phi_{j}^{\prime\prime}}{\phi_{j}}$$

- Ignore thrown flux weights $ar{\phi}$
- Set flux weight in calculation to nominal value $\phi^{\prime\prime}$
- Best fit point is different from other results $(\phi'' \neq \hat{\phi})$ $\hat{\sigma}''_j \neq \hat{\sigma}'_j = \hat{\sigma}_j$
- Covariance is different $cov(\sigma'') \neq cov(\sigma') \neq cov(\sigma)$
- Are fit results for parameters still valid there?

- Fitter is doing what it is supposed to:
 - Finding parameter sets that are compatible with reality
- Each post-fit throw of the fit parameters corresponds to one possible/plausible reality
- Currently we calculate the flux integrated XSEC as it would be in each reality, i.e. with that reality's flux
 - Good for finding the real flux integrated XSEC
 - Bad for comparing with the flux integrated XSEC at a specific flux
- We should calculate the flux integrated XSEC at a specific flux, i.e. extrapolate from those realities' fluxes to the specific one
 - Can be done by using specific flux parameters in XSEC calculation
- That specific flux should probably be the best fit flux, as that is the point where the parameters and covariance are valid

- Fixing the flux parameters in the XSEC calculation is not the same as saying "we assume this to be the real flux"
- Former:
 - We are as ignorant about the real flux as ever
 - We want to calculate the XSEC as it would be in the specific flux
 - Base for extrapolation are the possible fluxes in each throw
- Latter:
 - We assume we know our real flux
 - Would also fix the template weights as they are anticorrelated
 - Nothing gained in terms of flux error

- UNIVERSITY OF OXFORD
- The conceptual difference between the presented XSEC definitions is subtle
 - Can be easily confused when not being very careful
- How do we now what our old measurements did?
- How can we know what other experiments did?
- First rule of thumb test:
 - Do they calculate the XSEC using the varied flux in each toy/throw/reality/universe directly?
 → Probably affected by this
 - Do they extrapolate from the varied flux to a specific flux?
 → Probably not affected by this

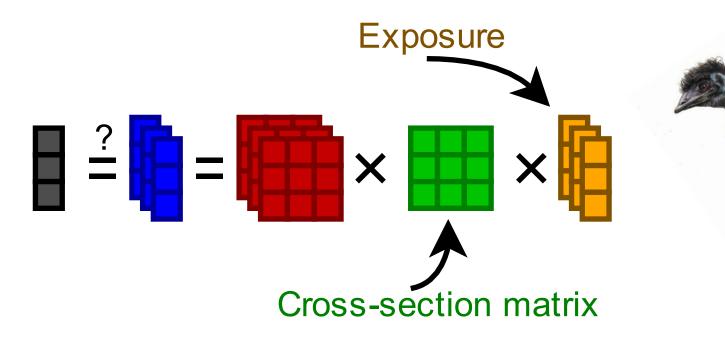
- In a realistic measurement there is smearing and other systematic parameters
- Average analysis bin weight becomes function of underlying parameters (detector, model, flux, ...)

$$N_j = N_j^0 w_j (d_a, m_b, \phi_c) c_j$$

• Can no longer scale results with flux weights only

$$\sigma_{j} = \frac{N_{j}}{\epsilon_{j}T\Phi} = \frac{N_{j}^{0}w_{j}(d_{a}, m_{b}, \phi_{c})c_{j}}{\epsilon_{j}(d_{a}, m_{b}, \phi_{c})T\Phi(\phi_{c})}$$
$$\sigma_{j}' = \frac{N_{j}'}{\epsilon_{j}'T\Phi'} = \frac{N_{j}^{0}w_{j}'(d_{a}, m_{b}, \phi_{c}')c_{j}}{\epsilon'(d_{a}, m_{b}, \phi_{c}')T\Phi'(\phi_{c}')} = \sigma_{j}\frac{\Phi}{\Phi'}\frac{w_{j}'}{w_{j}}\frac{\epsilon_{j}}{\epsilon_{j}'}$$

Flux forward folding



- Model predicts cross section for each flux bin
- Provide set of flux exposures according to uncertainties
 - Exposure = flux × time × target mass
- Flux and detector uncertainties can be correlated
 - Make one response matrix correspond to one exposure vector