Fermilab CONTRACTOR OF Science

DUNE Computing Capacity Requirements

Michael Kirby, Fermilab/Scientific Computing Division Nov 12, 2020

Outline

- development of the Resource Requirement Document
- general overview of computing plan (2020-2022)
- protoDUNE operation assumptions
- estimated resource requests
- discussion

Fermilab Computing Resource Scrutiny Group

- Fermilab CRSG review occurred May 4-5, 2020
- CRSG review of resource requests from FNAL experiments (DUNE, NOvA, Mu2e, etc)
- reviewed DUNE computing model and resource projections for 2020-2022
- commended FNAL and DUNE on choice of Rucio for Data Management
- emphasized importance of data lifetime policy
- focus on dCache (disk) usage requests
- stated that experiment resource requests were reasonable
- may want to delve deeper into the larger experiment resource justifications

General Plan for DUNE Computing 2020 - 2022

- Support the operation and analysis of protoDUNE SP and DP in 2020 (non-beam data) through disassembly for protoDUNE II
 - archive of raw, derived, and simulated data successful keep-up of data taking
 - production processing of SP and DP data twice per year PD-SP Prod4 has begun
 - production processing of simulation for SP and DP all sim requests for PD complete
 - there have been limited requests for simulation over the last 9 months
- Support the DUNE Far and Near Detector for design and sensitivity improvements
 - simulation of FD and ND samples DUNE TDR published ND CDR posted on arXiv
 - sensitivity studies for detector improvements and reviews
- Utilize the OSG, WLCG, and additional compute resources when available 4 new sites
- Improve access to HPC resources for specific analysis workflows and production workflow development

How do we estimate our raw data volume?

ProtoDUNE II Data Volume

- uncompressed SP data Run I 178 MB/evt
 - expected from 3 ms of 6 APAs
 - 20% overhead other PDS and headers
 - compressed SP data 71 MB/evt
 - compression factor of 2.5
- uncompressed DP data Run I 110 MB/evt
 - 2 CRPs readout 4 CRPs full detector
 - compression factor of 10 expected in 2021-2022

Far Detector Data Volume

- Single Phase FD Module scaled from the ProtoDUNE SP
- scale readout 6 -> 150 APA
- scale readout 3 ms -> 5.4 ms
- compression factor of 2.5 for standard operations
- assume start commissioning of one SP FD module in 2026
- assume start commissioning of one DP-FD module in 2028

How do we estimate our raw data volume?

Near Detector Data Volume

- incorporated from the ND Conceptual Design Report
- ND LAr Detector
 - TPC 3 MB/spill
 - Photon Detector System 5 MB/spill
 - assume compression of 3 2.6 MB/spill
- ND GAr Detector
 - Gas TPC 2 MB/spill
 - ECAL 1 MB/spill
 - both uncompressed

- SAND 3D Scintillator Tracker
 - 0.3 MB/spill
- 10 MB/spill raw data total
- assumptions 5% downtime of each subdetector

Fermilab

Beam and Cosmic Operations assumptions

- ProtoDUNE II
 - 150 days of cosmic running in 2020/2021/2023 both SP (6.5 M evts) and DP (21.6 M evts)
 - 50 days of beam in 2021 and 2022 both SP (17 M evts) and DP (40 M evts)
 - cosmic running in 2022 SP (300 days 13 M evts) and DP (200 days 24.4 M evts)
- Commissioning of one SP-FD module begins with 150 APAs in 2026
- Commissioning of one DP-FD module begins in 2028
- "ProtoND" operations in 2022 and 2023
- Commissioning of ND starts in 2028

Reconstructed data volume and processing

- Reconstruction algorithms for ProtoDUNE are well defined (three successful campaigns)
- dropping waveforms/raw data after reconstruction leads 10x reduction from raw volume - FD 100x reduction
- run time is 600 s/evt for both SP and DP
 - 180 s/evt his finding
 - 420 pattern recognition
 - matching performance found on WLCG/ OSG worker nodes
- ND reco data estimate equal to raw data
- ND reconstruction estimate 172 s/evt

- ProtoDUNE Simulation 10 M evts
 - 2700 s/evt current experience
 - 200 MB/evt current experience
- FD simulation 10 M evts
 - 2700 s/evt from ProtoDUNE
 - 200 MB/evt
- ND simulation
 - 25 M evts 2021
 - 10 M evts 2022 2025
 - 50 M evts 2026 ->2030
 - 300 s/evt (2.5 x CPU for data)

Fermilab

- 20 MB (2x data reco/evt)

Data Retention Policies

- Tape Storage
- two copies of all raw data for security
 - FNAL provides storage for an archival copy of all raw data (ND, FD, ProtoDUNE)
 - Rucio Storage Elements (RSEs) around world provide tape storage for 2nd copy
 - test data retained for 6 months
 - one copy of all reconstructed data indefinitely
 - ProtoDUNE, FD, ND
 - one copy of all simulated data indefinitely
 - ProtoDUNE, FD, ND

- Disk Storage
 - raw data disk lifetime is dictated by production processing schedule
 - reconstruction derived dataset has a disk lifetime of two years
 - simulation has a disk lifetime of two years
 - reconstruction and simulation datasets
 will be available from two institutions
 - FNAL provides disk for reconstructed data derived dataset
- From these policies can model the tape and disk modeling

Computing Model and Data Model Policies

- ProtoDUNE
 - reconstruction processing twice/year
 - four active data datasets on disk
 - simulation processing once/year
 - two active MC datasets on disk
 - production processing continues though
 2025 when datasets are frozen
- DUNE Far Detector
 - reconstruction processing twice/year
 - process full dataset not seen til 2030
 - simulation processing once/year

- if data lifetime is shorter than 10 years, effect not seen in model
- DUNE Near Detector
 - reconstruction processing twice/year
 - process full dataset not seen until 2030
 - simulation processing once/year
- Can estimate tape, disk, and CPU usage for each year
- analysis CPU estimated as equal to production processing
- analysis storage is considered < 10% perturbation

Fermilab

ProtoDUNE SP and DP Operations and Raw Data

protoDUNE Single Phase	2020	2021	2022	protoDUNE Dual Phase	2020	2021	2022
cosmic rate (Hz)	1	1	1	cosmic rate (Hz)	5	1	1
beam rate (Hz)	0	5.6	5.6	beam rate (Hz)	0	18.3	18.3
uptime (days)	150	150+50	300+50	uptime (days)	100	150+50	300+50
events	6.5 M	24 M	30 M	events	21 M	62 M	65 M
event size (MB)	173	173	173	event size (MB)	110	110	110
compression	2.5	2.5	2.5	compression	10	10	10
yearly data (TB)	450	1625	2070	yearly data (TB)	240	681	710
							5 Fermila'

DUNE ND Simulation Data Volume

Near Detector Simulation	2020	2021	2022	Near Detector Prototypes	2022	2023	2024
				events	10 M	10 M	0
events	10 M	25 M	10 M	event size (MB)	10	10	10
event size (MB)	20	20	20	yearly data (MB)	100	100	0
yearly data	200	500	200	test data (MB)	300	300	0
(TB)	200	500		derived data (MB)	200	200	200
CPU (MHrs)	1	3	1.2	CPU (MHrs)	0.3	0.3	0.3
							Fermilat

Tape and disk storage 2018-2030

- Computing Model for DUNE Storage
 - 2 archival copies of raw, 1 for derived & simulated data 1 copy at FNAL, second copy distributed institutions

Fermilab

- production processing of SP and DP data twice per year and once matching simulation
- 4 copies of active derived and simulated datasets on disk dataset stays active for 2 year

13

DUNE CPU requirements

protoDUNE Single Phase	2020	2021	2022	protoDUNE Dual Phase	2020	2021	2022
data events	6.5 M	24 M	30 M	data events	21 M	62 M	64 M
CPU (hr)	1 M	4 M	5 M	CPU (hr)	3.5 M	10.5 M	10.8 M
MC events	5 M	5 M	5 M	MC events	5 M	5 M	5 M
CPU (hr)	3.8 M	3.8 M	3.8 M	CPU (hr)	3.8 M	3.8 M	3.8 M
analysis (hr)	5 M	8 M	9 M	analysis (hr)	8 M	14.3 M	14.6 M
Total CPU (hr)	13.8 M	16 M	17 M	Total CPU (hr)	15.3 M	28 M	29 M
Total CPU (HS06 years)	15750	18260	19400	Total CPU (HS06 years)	17470	32000	33100
						₹	Fermilat

SP Data 0.16 hr/evt - SP MC 0.75 hr/evt - DP 0.16 hr/evt - DP 0.75 hr/evt

Total DUNE Resource Needs

Resource	2020	2021	2022	
Disk (PB)	16	20	26	
Tape (PB)	19	29	40	
CPU (kHS06-years)	33.1	50.2	52.5	
CPU Cores	2200	3460	3540	

‡ Fermilab

CPU Resources 2018 - 2030

- ProtoDUNE CPU
 needs dominate for the
 foreseeable future
- May actually be larger than FD requirements
- Near Detector CPU needs for reconstruction and simulation become significant in 2026 and will content with FD CPU needs

Fermilab

Summary

- Proposed resources needs for 2020 - 2022 were reviewed by Fermilab CRSG
- estimates based upon experience from ProtoDUNE, FD TDR, and ND CDR development
- tape and disk estimates may be the largest driver of dedicated resources
- CPU needs on the WLCG/ OSG are being met currently

Discussion

DUNE Computing Model for Institutional Sites

- Based the HSF DOMA model for sites
 - Archive Center (AC) tape/staging
 - Data and Compute Center disk + CPU
 - Computer Center (CC) CPU + cache
 - Analysis Facility (AF) cpu + cache
 Ephemeral Facilities (EF) (HPC, IaaS)
- Goal is to have resource split between FNAL and other institutions 25%/75%
- FNAL has some custodial responsibilities from the Dept of Energy that make this not possible for tape

Data Access in DOMA, HSF/OSG/WLCG Joint Workshop J-LAB Newport News, VA 19-23 March 2019

DUNE Computing Model for Institutional Sites

- Simplified terms for current DUNE sites
 - Tape Site tape/staging
 - Disk Site disk + CPU
 - Compute Site CPU + cache
 - Analysis Site cpu + cache
 - HPC (HPC, laaS)
- Goal is to have resource split between FNAL and other institutions 25%/75%
- FNAL has some custodial responsibilities from the Dept of Energy that make this not possible for tape

Data Access in DOMA, HSF/OSG/WLCG Joint Workshop J-LAB Newport News, VA 19-23 March 2019

