Updates on v_{τ} CC search based on kinematics for the $\tau \rightarrow \rho \rightarrow \pi^{-}\pi^{0}$ channel

vt meeting group

5th November 2020

Thomas Kosc — <u>kosc@ipnl.in2p3.fr</u>

3rd year PhD student at Institut de Physique des Deux Infinis (Lyon, France) Supervisor : Dario AUTIERO

Abstract

• Can't rely on a **direct** τ identification for DUNE far detectors: look at the τ decay modes and develop for each channel a τ appearance analysis.

• Use the rich single event kinematic information available at DUNE FD. I'm working with the CAFANA NTuples used for the DUNE TDR, and developing a kinematic based search analysis for the τ flavor.

• Previously, I developped an analysis for leptonic decay mode, especially for τ —>e decay mode (18% BR). I had likelihood discrimination (cut at 0.7) + CVN pre-selection indicating 14% signal kept, while 7% nue contamination (not normalised). **Can be improved**.

See DUNE collaboration meeting January 2020.

• I extended the leptonic analysis to an **exclusif decay mode**: $\tau \longrightarrow \rho v_{\tau} \longrightarrow \pi^{-}\pi 0 v_{\tau}$: **large BR** (25%), recontruction of **resonance** with charged pion and $\pi 0$, get inspiration from NOMAD experiment (which ran at higher energies than DUNE, though).

• The $\pi 0$ case: I decay all $\pi 0$ manually into two photons, isotropically in the $\pi 0$ rest frame. No Dalitz decay. I use a conservative hypothesis: no *a priori* $\pi 0$ reconstruction performance. Any pair of photons will be, to me, a $\pi 0$ candidate.

The $\tau \rightarrow \rho \rightarrow \pi 0\pi^-$ decay mode: cross check using the invariant mass

• In the CAFANA files, the ρ isn't explicitly recorded. Instead, one finds that $\tau - - > \pi - \pi_0 v_{\tau}$, I first checked that the ρ was well simulated underneath (one may find explicit ρ simulated within the hadronic system). Collection name='genie::GHepParticles', class='genie::EventRecord', size=1000

• Invariant mass distribution of the true ρ ($\pi_0 \pi^-$) system (stat. errors), fitted by a relativistic Breit-Wigner gives correct ρ mass of 0.776 GeV and correct width decay (0.146 GeV).

The ρ is there, underneath.

ρ tagging equivalent to tagging a (π 0; π -)

• Vocabulary : in this talk, I will refer as : system

- The true ρ: the (π0π-)system which are the true final decay products of the τ—>ρ resonance.
- The fake ρ : any ($\pi 0\pi^{\pm}$) system which doesn't fulfill the previous condition.

N.B: the $\pi 0$ itself decays into two photons, thus I'm looking at triplets ($\gamma 1 \gamma 2 \pi \pm$) instead of doublets.

Developing a ρ **tagging method with the invariant masses** (individual particle smearing activated)

• Within a $v_{\tau}CC$ event, the hadronic system can be composed of pions too, thus **blurring** the true ρ decay system. To get some help, let's exploit the scatter plot of the **invariant masses** ($\pi 0$; ρ) (the $\pi 0$ momentum is thus present in both invariant masses).

• We observe that the true ρ decay particles (top right) are distributed around (0.135; 0.776) GeV, the π 0 and ρ true masses. All other ρ candidates are gathered in a single plot (bottom right), which we observe to be way more spread in the plane. Motivation for a **ranking method** based on the 2D cartesian distance:

$$d = \sqrt{\left(M_{\pi_0}^{(inv)} - m_{\pi_0}\right)^2 + \left(M_{\rho}^{(inv)} - m_{\rho}\right)^2}$$

Within an event, I refer as the **best** ρ , the ρ candidate which scored the smallest **d**. The best ρ can be either the true ρ , either a fake ρ .

The ranking selects events with an expected distributions. Contamination ?

Among a sample of $v_{\tau}CC(\tau \rightarrow \rho)$, I found that :

- 54% had no ρ confusing candidate (no degeneracy)
- 27% had a ρ scoring the best score (I don't specify the number of fake ρ candidates defeated in the process).
- 9% finished 2nd
- 6% finished 3rd and more
- 3% were discarded (it happens, for instance, when one of the ρ daughters undergoes smearing and gets a null energy, thus considered unreconstructed).

The correct ρ is selected 81% of the time, 19% contamination a this stage.

The analysis framework : assumptions, S and B definitions

For the following, I will assume that:

- I run in neutrino mode.
- I can reconstruct all charged particles energies (no smearing on them, but neutrons are discarded).
- I can identify them (as a consequence I can reconstruct their momentum), but I can't differentiate π + from π -.

Signal = $v\tau CC(\tau \rightarrow \rho \rightarrow \pi^- \pi 0 \rightarrow \pi^- \gamma 1 \gamma 2)$ **Background** = NC with an existing ($\pi^{\pm}\pi 0$) system. In case of ρ degeneracy, **pick the best** ρ .

Because of the ρ degeneracy, in NC for each event I use the ρ candidate which scored the best invariant masses criteria, and use this candidate to construct the kinematic distributions.

Schematic view of a $\nu_\tau CC$ event

The set of kin. variables used vtCC true ρ VS NC best ρ

I use 16 kinematical variables, including:

- Pions energie the sum of both (that I call the ρ energy, a terrible name), + pion energy sharing. $r_{\pi}^{K} = \frac{E_{\pi\pm}^{K}}{E_{\pi\pm}^{K} + E_{\pi0}^{K}}$
- Invariant masses for $\pi 0$ and $(\pi 0\pi \pm)$ systems.

$$E_{\pi_0}^K; E_{\pi^{\pm}}^K; \rho_K; r_{\pi}^K$$

- Various space angles (θ) between system momenta : ρ , h(hadronic), total, v (beam direction). Some of these angles are representative of the isolation of the rho candidate with respect to the hadronic system.

 $M^{(inv)}; M^{(inv)}$

$$\theta_{\rho h}; \theta_{\rho tot}; \theta_{hv}; \theta_{\rho v}$$

- Transverse plane information of had. syst., ρ syst. and missing component (modulus of the momentum, plus relative direction with angle ϕ). $p_{\rho}^{(tr)}; p_{had}^{(tr)}; p_{miss}^{(tr)}; \phi_{h\rho}^{(tr)}; \phi_{m\rho}^{(tr)}; \phi_{m\rho}^{(tr)}$

- Pion energy sharing: S has ~flat distribution, while B has asymmetry in the energy sharing.
- Red ρ invariant mass dist. has a strange shape because of the ρ selection criteria (cf. slide 4).
- Pions of S have higher energy than B.
- In the transverse plane, the missing momentum is ~180° with respect to the hadronic momentum for NC (which is what we expect, since their is no true ρ system)

To improve the discrimination power, one can have a look at 2D correlations of variables. Some illustrations

Signal

For NC: ~0° transverse rh angle and ~180°. Signal is more spread.

Different region of the plane prefered.

Many possibilities at this point. I isolated most powerful 2D correlation variables (one that had the greatest S/ B ratio), and tried diverse combinations of these most powerful candidates to optimise the likelihood search.

This BR decay isn't in agreement with the PDG, expected 25.49%, stat. fluctuation of my number is of the order 0.1%. I will reweight it, but a specific o investigation is ongoing.

Optimised likelihood search

Likelihood plots are normalised to 1. They inform on the discrimating power of the variables, but don't provide normalised S/B estimations.

LH Cut	0.2	0.4	0.6	0.8	1.0	1.2
S (%) fake ρ (%)	70.1 (6.3)	63.1 (5.1)	55·3 (4.0)	47·4 (3.0)	39.2 (2.3)	31.2 (1.6)
B (%)	15.1	11.0	7.8	5.3	3.2	2.1
S/sqrt(B)	1.80	1.90	1.98	2.06	2.16	2.15

Optimised likelihood search - normalisation

• 3.5 years staged		$\left[\theta_{\rho h};\rho_{energy}\right] \times \left[p_{miss}^{(tr)};p_{\rho}^{(tr)}\right] \times M_{\rho}^{inv} \times ratio$							ratio	
• 1.2 MW beam			LH Cut	0.2	0.4	0.6	0.8	1.0	1.2	
• DUNE CP violation optimised		ed flux	S_norm (fake r)	31.8 (2.9)	28.6 (2.3)	25.1 (1.8)	21.5 (1.4)	17.8 (1.0)	14 .2 (0.7)	
ſ)	B_norm	187.9	136.9	97.1	66.0	41.1	26.1
	DUNE 3.5 year staged expected number of events at FD. 181 181 25.49 [%] ↓ τ-			S/ sqrt(B)_norm	2.32	2.44	2.55	2.65	2.78	2.78
			45.4							
			46.1 98.3% $\tau \rightarrow \rho \rightarrow \pi^{-}\pi^{0}$		There exists a counter had. syst.					
6953 NC →		$\begin{array}{c} 1348.9 \\ Exist \rho \\ candidate \end{array} \begin{array}{c} 92.3\% \\ \bullet \end{array}$		There syste	1245.0 There exists an hadronic system to go with each r candidate					

Thomas Kosc / IP2I (Lyon, France)

Conclusion

• I presented an analysis for the v_{τ} search based on kinematics for the ρ resonant decay mode, exploiting its large branching ratio (25%). It follows and extend an analysis I had made for the leptonic decay modes.

• The main background components of this process are the NC with final state pions that can mimic the true ρ signature. We exploited the rich kinematic information to discriminate between S and B. It appears there is the possibility to select a sample of ~18 vtCC events in a 3.5 years staged run, while having a NC contamination of ~41 (S/sqrt(B)=2.78).

• This analysis is slightly improvable injecting the $\pi + /\pi^-$ idendification, that helps reducing the background (less fake ρ candidates in a single event, thus less likely to mimic a true ρ). The previous S/B selection would move from 18/41 to ~20/32 (S/sqrt(B)=3.50)

• Additionnal stuff to be discussed: particle smearing effect...

