
CMS pMSSM workflow

Malte Mrowietz 04.11.2020

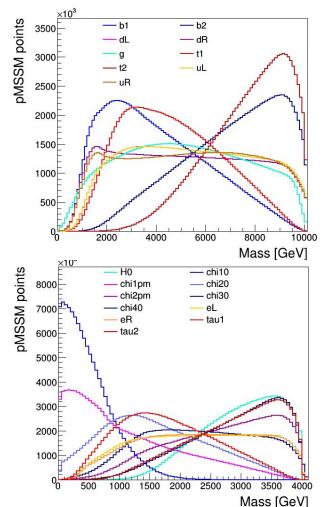
What's going on in CMS with the pMSSM?

Scan model points from the pMSSM

• Markov chain Monte Carlo (MCMC)

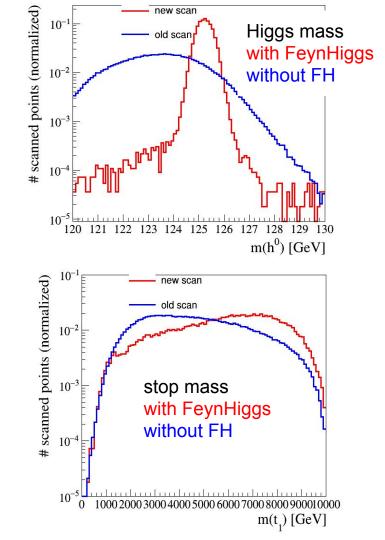
• millions of points

Scanning with Markov chain Monte Carlo (McMC)


- Large parts of the (low-energy) pMSSM are constrained by all sorts of results (b-physics, LEP, Higgs mass etc)
- Want to sample the favored regions with higher frequency
- MCMC employs a likelihood to sample the space
 - Likelihood based on Higgs mass and low-energy observables
 - MCMC is <u>not</u> a minimization: it produces a posterior density
 - Efficient sampling of interesting pMSSM subspace, enables Bayesian interpretation

Considered ranges

Prior for MCMC: flat in linear pMSSM parameters


$M_{d1}, M_{d3}, M_{u1}, M_{u3}, M_{d1}, M_{d3}$	[0 , 10 TeV]
$M_{q1}^{}, M_{q3}^{}, M_{u1}^{}, M_{u3}^{}, M_{d1}^{}, M_{d3}^{}$ $M_{11}^{}, M_{13}^{}, M_{r1}^{}, M_{r3}^{}$	[0 , 4 TeV]
M_{1}, M_{2}, μ	[-4 TeV, 4 TeV]
M ₃	[0 , 10 TeV]
A_{t}, A_{b}, A_{l}	[-7 TeV, 7 TeV]
m _{A0}	[0 , 4 TeV]
tan (β)	[2 , 60]

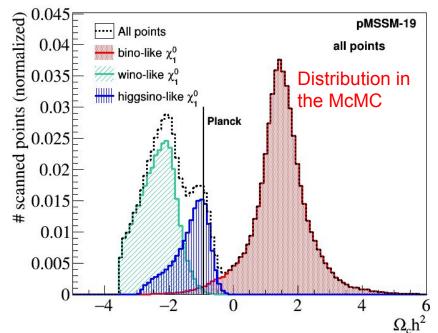
- Strong parameters up to 10 TeV:
 - Much of parameter space has no phenomenologically active strongly interacting particles
- Electroweak parameters up to 4 TeV:
 - No strong particles expected at LHC for m = 4 TeV, whole cascade phenomenology open
 - Long-lived phenomenology if μ small and 3 TeV < M₁, M₂ < 4 TeV
- tan (β) lower bound: non-perturbative at GUT scale

The McMC likelihood (part 1)

- Encoded prior knowledge into likelihood
- Avoided controversial results: if they turn out to be false, the scan could have a lingering bias
- public tools are available to implement low-energy constraints, e.g.:
 - Superiso (includes correlations among observables)
 - \circ SPheno
 - New: FeynHiggs for Higgs mass likelihood

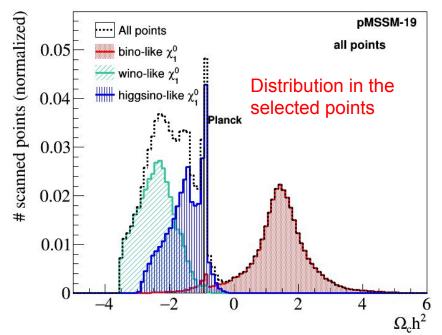
The McMC likelihood (part 2)

correlations not treated (SPheno)


- BR(B⁺ \rightarrow T V)
- $BR(D_s \rightarrow T v)$
- $BR(D_s \rightarrow \mu v)$
- Δ(ρ)
- $L = \prod L_i$, i = flavour observables above
- L_i: Gaussian distribution:
 - centered on measurement
 - width = measurement error
 - evaluate at model prediction = likelihood

Superiso chi2 (correlations treated)

- $\Delta_0 (B \rightarrow K \gamma)$
- $BR(B_s \rightarrow \mu \mu)$
- $BR(B_d \rightarrow \mu \mu)$
- BR(b \rightarrow s μ μ)
- BR(b→s e e)
- BR(B0 \rightarrow K^{*0} γ)


Picking a smaller, desirable subset of points

- Reduce point autocorrelation
- Over-sample regions we might want to zoom into:
 - by a factor of 3 if the point has ΔEW < 100 (as defined in <u>https://arxiv.org/pdf/1304.6732.pdf</u>)
 by a factor of 10 if the point has m_{stop} < 1 TeV
 - by a factor of 5 if the point has $m_{stop}^{stop} < 1.5 \text{ TeV}$
 - by a factor of 20 if the point has a relic density compatible with the Planck measurement
 - undersample SModelS excluded points (using analyses that are not used later)
 - $\circ\,$ regions relevant for exciting but fluid results from the community, e.g., $a_{_{I\!I}},$
- Weight all distributions by 1/(oversampling factor)

Picking a smaller, desirable subset of points

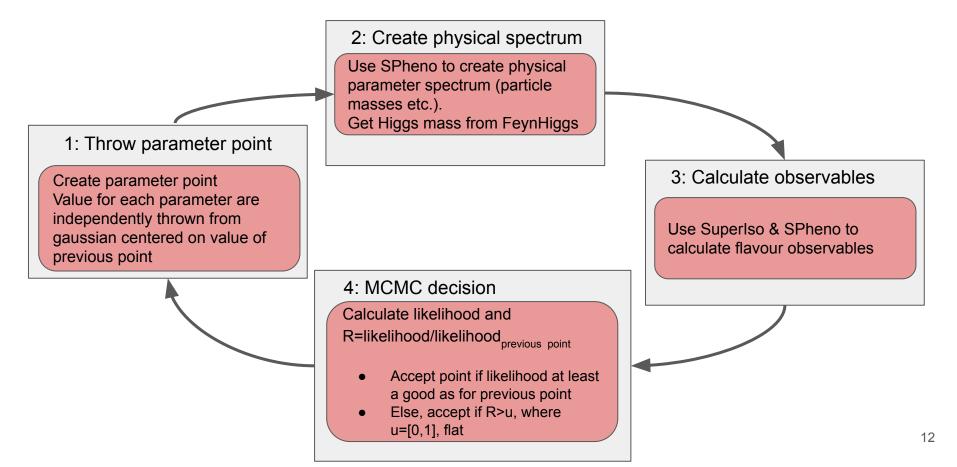
- Reduce point autocorrelation
- Over-sample regions we might want to zoom into:
 - by a factor of 3 if the point has ΔEW < 100 (as defined in <u>https://arxiv.org/pdf/1304.6732.pdf</u>)
 by a factor of 10 if the point has m_{stop} < 1 TeV
 - by a factor of 5 if the point has m_{stop}^{stop} < 1.5 TeV
 - by a factor of 20 if the point has a relic density compatible with the Planck measurement
 - undersample SModelS excluded points (using analyses that are not used later)
 - $\circ\,$ regions relevant for exciting but fluid results from the community, e.g., $a_{\mu}^{},$
- Weight all distributions by 1/(oversampling factor)

Simulation and gen-level filter

No need to simulate events that we know won't pass a trigger

A gen-level filter might look something like this:

- Loose **OR** gen-level event filter (Filter efficiencies above 1%)
 - \circ gen H_T > 140 GeV
 - gen muon with $p_T > 15 \text{ GeV}$
 - gen electron with $p_{T} > 15 \text{ GeV}$
 - gen photon with $p_T > 70 \text{ GeV}$
 - gen tau with $p_T > 30 \text{ GeV}$
 - leading photon $p_T > 30 \text{ GeV} + \text{sub-leading photon } p_T > 18 \text{ GeV}$
 - two or more gen objects of type: electron $p_T > 5$, muon $p_T > 2.5$, photon $p_T > 30$
 - detector stable chargino that reaches the muon system


Conclusion

- Sample the pMSSM using Markov chain Monte Carlo
 - Good way to incorporate prior (low-energy) results into sampling
 - Efficient sampling of low-energy posterior density
 - Bayesian interpretation of scan is possible
 - \circ Need to sample many more points than are actually analyzed
- Sample McMC posterior to obtain a subset of pMSSM models to analyze

 Increase scan resolution by oversampling interesting regions (or undersampling less
 interesting ones)
- Bayesian interpretation of final posterior density
 - Solid interpretation framework
 - Much broader set of statements possible compared to frequentist interpretation
 - Need to be very careful about the conditions under which the conclusions are valid

Backup

Markov chain Monte Carlo Scan Workflow

How long, and where to store

- If Bayesian interpretation desired: MCMC needs to converge. Try to apply convergence heuristics
- Points in same chain are autocorrelated, need to select a sufficiently sparse subset before continuing
- Convergence of the chain only matters for Bayesian interpretation
- How to store output:
 - Current version of the scan saved the compressed slha text files on disk
 - Produces large I/O for transferring files from worker node to storage
 - Very space inefficient
 - Better: store points directly in database format (ROOT, HDF5,etc.)

Further thoughts on the MCMC

- Consider MCMC step time (in CMS: 10-20s per point)
 - Do not compute quantities that are not necessary for the MCMC at this point
 - Main time consumer for us: disk I/O
 - It may be worth investing in an interface does not need to write to disk
- CMS uses private MCMC implementation, but: there are public libraries that implement MCMC:
 - Different choices of step function
 - Diagnostic tools
 - Potentially better optimized