Some original SUSY literature:

The reports of my death have been greatly exaggerated.

~ Mark Twain

pMSSM Fits:

(Theory) Problems and Solutions – Short version

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

virtual only, 11/2020

- 1. SUSY Higgs-boson masses couplings and BRs
- 2. LHC rate measurements and BSM Higgs limits
- 3. Example results
- 4. Conclusions

1. SUSY Higgs-boson masses, couplings and BRs

The Higgs mass accuracy: experiment vs. theory:

Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 { m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\text{exp}} = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}$

1. SUSY Higgs-boson masses, couplings and BRs

The Higgs mass accuracy: experiment vs. theory:

Experiment:

ATLAS:	$M_h^{\rm exp} = 125.36 \pm 0.37 \pm 0.18 { m GeV}$
CMS:	$M_h^{\rm exp} = 125.03 \pm 0.27 \pm 0.15 ~{ m GeV}$
combined:	$M_h^{\rm exp} = 125.09 \pm 0.21 \pm 0.11 {\rm GeV}$

MSSM theory:

LHCHXSWG adopted FeynHiggs for the prediction of MSSM Higgs boson masses and mixings (considered to be the code containing the most complete implementation of higher-order corrections)

FeynHiggs:
$$\delta M_h^{\text{theo}} \sim 3 \text{ GeV} \text{ (now } 1-2 \text{ GeV?)}$$

 \rightarrow rough estimate, FeynHiggs contains algorithm to evaluate uncertainty, depending on parameter point

Working group on M_h predictions:

sites.google.com/site/kutsmh

Katharsis of Ultimate Theory Standards 11th meeting: 20-22 November 2019 (MPI Munich) **Precise Calculation of** Higgs Boson masses Organized by: M. Carena, H. Haber R. Harlander, S. Heinemeyer Local organizers: T. Hahn, W. Hollik W. Hollik, P. Slavich, G. Weiglein

 \Rightarrow next meeting: 06/2021 at PSI, Switzerland (originally 06/2020 ...)

Improved predictions for MSSM scenarios

Are these improved calculations relevant? Are they relevant in any "realistic" scenario?

Example for: – CMSSM with stop co-annihiliation – pMSSM11 (later!)

Comparison of hybrid codes:

FeynHiggs 2.10.0 (first hybrid code in 2013)

- log-resummation with M_S
- 2L RGEs, 1L thresholds

-
$$m_t^{MS}$$
 at NLO

FeynHiggs 2.14.1 – log-resummation with M_S

- Inclusion of EWino mass scale in RGE's
- Inclusion of gluino mass scale in RGE's
- 3L RGEs, 2L thresholds
- $-m_t^{\overline{\text{MS}}}$ at NNLO
- Inclusion of EW effects in RGE's and $m_t^{\overline{\text{MS}}}$

[E. Bagnaschi et al. '18]

Stop-coannihilation in the CMSSM:

 $\Rightarrow \text{ clear impact of improved } M_h \text{ calculation} \\ \Rightarrow \mathcal{O}\left(\alpha_t^2\right) \text{ non-degenerate threshold corr. crucial!}$

Another important example: large gluino mass:

[H. Bahl, S.H., W. Hollik, G. Weiglein '19]

\Rightarrow only latest FeynHiggs version gives accurate results \Rightarrow note the small uncertainty band (green)!

 \Rightarrow estimate in several benchmark scenarios with FeynHiggs 2.16.0

 $\Rightarrow \Delta M_h \sim 2 \text{ GeV} - \text{but point-by-point evaluation crucial!}$

CMS example in pMSSM scan:

- *m_h* not a free parameter in the MSSM (or pMSSM)
- window cut placed on the Higgs mass: m_h ∈ [120, 130] GeV

 \rightarrow almost not necessary due to the natural range of values

 heaviness of Higgs boson (~125 GeV) associated largely with heavier stops

$$m_{h^0}^2 \sim m_Z^2 \mathrm{cos}^2 2eta + rac{3}{\pi^2} rac{m_{ ilde{t}}^4 \mathrm{sin}^4 eta}{v} \log(rac{m_{ ilde{t}}}{m_t})$$

\Rightarrow room for improvement . . .

2. LHC rate measurements and BSM Higgs limits

HiggsBounds and HiggsSignals

Team: P. Bechtle, SH, T. Klingl, T. Stefaniak, G. Weiglein, J. Wittbrodt

HiggsBounds

HiggsSignals

Confronts BSM Higgs sectors with exclusion limits from LEP, Tevatron and LHC Higgs searches.

Confronts BSM Higgs sectors with LHC Higgs signal rate and mass measurements.

 \Rightarrow excluded/allowed at 95% C.L. ($\chi^2_{\tau\tau}$...) $\Rightarrow \chi^2$ (sep. for rates and mass)

Codes available at GitLab & hepforge.

Most important BSM Higgs searches for pMSSM scan:

 $pp \to H/A \to \tau^+ \tau^-$

ATLAS and CMS published $-2\ln\mathcal{L}$ values for 13 TeV

- ATLAS with full Run 2 data
- CMS (so far) for 36 fb^{-1}

Narrow resonance (ϕ) toy model in three dimensions: m_{ϕ} , $\sigma_{qq\phi}$, $\sigma_{bb\phi}$

 \Rightarrow full $-2 \ln \mathcal{L}$ result for many BSM models in HiggsBounds via simple algorithm [P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '15]

 \Rightarrow re-interpretation in the MSSM possible

 \Rightarrow preferred over just a hard cut at 95% CL

Validation:

HiggsSignals:

Is the h_{125} in agreement with the LHC rate measurements?

Included:

- 7, 8, 13 TeV data
- $-\mu$ values
- STXS measurements
- correlations (where available)
- \Rightarrow overall χ^2 to all available channels

Validation:

- 1-dim (μ , STXS)
- 2-dim κ -plots or μ -plots
- effect of correlations crucial

$\Rightarrow \chi^2(h_{125})$ can reliably be used in the MSSM

3. Example results: pMSSM11 predictions

[2017]

Parameter	Range	# of segments
M_1	(-4 , 4) TeV	6
M_2	(0,4)TeV	2
M_{3}	(-4 , 4) TeV	4
$m_{ ilde{q}}$	(0,4)TeV	2
$m_{ ilde{q}_{3}}$	(0,4)TeV	2
$m_{ ilde{l}}$	(0,2)TeV	1
$m_{ ilde{ au}}$	(0,2)TeV	1
M_A	(0,4)TeV	2
A	(-5 , 5) TeV	1
μ	(-5 , 5) TeV	1
aneta	(1,60)	1

\Rightarrow I doubt that (many) more dimensions can reliably(!) be sampled

 \Rightarrow clear impact of improved M_h calculation \Rightarrow enlarged allowed regions, better compatibility!

4. Conclusinos

- Needed for LHC/HL-LHC physics: Precise and consistent theory predictions: masses, mixings, couplings, XS's, BR's, ... ⇒ (partially) provided by FeynHiggs (adopted by LHCHXSWG)
- High precision in M_h crucial: huge effects for large mass splittings $\Delta M_h^{\text{FH}} \sim 1 - 2 \text{ GeV} \Rightarrow \text{Important: point-by-point evaluation}$
- Consistent compilation of BSM Higgs searches: HiggsBounds Crucial for pMSSM scan: $pp \rightarrow H/A \rightarrow \tau^+ \tau^-$ 3-dim likelihood from ATLAS/CMS \Rightarrow reinterpretation in pMSSM
- Consistent compilation of h_{125} measurements: HiggsSignals overall χ^2 to all available channels \Rightarrow reliable use in pMSSM
- MasterCode results for the pMSSM11: (I doubt that (many) more dimensions can reliably be sampled)
 ⇒ compressed spectra play a crucial role
 ⇒ large effects of improved M_h calculations

Further Questions?

Codes on the market:

- 1.) Fixed order codes: good for all scales low
- SuSpect
- SPheno/SARAH
- SoftSUSY/FlexibleSUSY
- H3m
- 2.) EFT codes: good for all scales high
- SusyHD
- MhEFT
- HSSUSY
- 3.) Hybrid codes: good always?!
- FeynHiggs
- FlexibleEFTHiggs
- SPheno/SARAH

Obviously: quality depends on the details implemented

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's
- Inclusion of gluino mass scale in RGE's
- Inclusion of EW effects in RGE's
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
- "Two Higgs Doublet Model" below M_S
- Splitting in the scalar top sector

• • • •

Possible & necessary refinements of the EFT calculation:

- Inclusion of EWino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of gluino mass scale in RGE's ⇒ included into FeynHiggs
- Inclusion of EW effects in RGE's
 ⇒ included into FeynHiggs
- Inclusion of 3-loop RGEs plus 2-loop thresholds etc.
 ⇒ included into FeynHiggs
- "Two Higgs Doublet Model" below M_S \Rightarrow included into FeynHiggs, other code: MhEFT
- Splitting in the scalar top sector
 ⇒ not available yet, but crucial for the future!

• . . .

FeynHiggs provides:

Evaluation of all MSSM Higgs boson masses and mixing angles

• $M_{h_1}, M_{h_2}, M_{h_3}, M_{H^{\pm}}$, $\alpha_{eff}, \mathbf{Z}_{ij}, \mathbf{U}_{ij}, \ldots \Rightarrow$ precision disussed before

Evaluation of all neutral MSSM Higgs boson decay channels (so far)

- total decay width Γ_{tot}
- BR $(h_i \rightarrow f\bar{f})$: decay to SM fermions: full 1L, running m_q at 3L, \mathbf{Z}_{ij}
- BR $(h_i \rightarrow Z^{(*)}Z^{(*)}, W^{(*)}W^{(*)})$: decay to massive SM gauge bosons: Prophecy4f \oplus coupling factors, \mathbf{U}_{ij}
- BR($h_i \rightarrow \gamma \gamma, gg$): decay to massless SM gauge bosons: NLO QCD, gg: NNLO, NNLL from SM, U_{ij}
- BR $(h_i \rightarrow h_j Z^{(*)}, h_j h_k)$: decay to gauge and Higgs bosons: $h_j Z^{(*)}$: U_{ij}, $h_j h_k$: full 1L, log-resum, Z_{ij}
- $\mathsf{BR}(h_i \to \tilde{f}_i \tilde{f}_j)$: decay to sfermions: \mathbf{U}_{ij}
- BR $(h_i \rightarrow \tilde{\chi}_i^{\pm} \tilde{\chi}_j^{\mp}, \tilde{\chi}_i^0 \tilde{\chi}_j^0)$: decay to charginos, neutralinos: \mathbf{U}_{ij}

Evaluations for the charged Higgs boson

- total decay width Γ_{tot}
- $BR(H^+ \to f^{(*)}\bar{f}')$: decay to SM fermions
- $BR(H^+ \rightarrow h_i W^{+(*)})$: decay to gauge and Higgs bosons
- $BR(H^+ \to \tilde{f}_i \tilde{f}'_i)$: decay to sfermions
- $BR(H^+ \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_i^+)$: decay to charginos and neutralinos
- H^+ production cross sections at the LHC
- $\mathsf{BR}(t \to H^+ \overline{b})$ for $M_{H^\pm} \leq m_t$ (H^\pm production)

Evaluation of additional couplings:

- $g(V \rightarrow Vh_i, h_ih_j)$: coupling of gauge and Higgs bosons
- $g(h_i h_j h_k)$: all Higgs self couplings (including charged Higgs)

MSSM Higgs mass calculationss

Method I

Higher-order corrections in the Feynman diagrammatic method:

Propagator/Mass matrix at tree-level:

$$\left(\begin{array}{cc} q^2 - m_H^2 & 0\\ 0 & q^2 - m_h^2 \end{array}\right)$$

Propagator / mass matrix with higher-order corrections $(\rightarrow$ Feynman-diagrammatic approach):

$$M_{hH}^{2}(q^{2}) = \begin{pmatrix} q^{2} - m_{H}^{2} + \hat{\Sigma}_{HH}(q^{2}) & \hat{\Sigma}_{Hh}(q^{2}) \\ \\ \hat{\Sigma}_{hH}(q^{2}) & q^{2} - m_{h}^{2} + \hat{\Sigma}_{hh}(q^{2}) \end{pmatrix}$$

 $\hat{\Sigma}_{ij}(q^2)$ (i, j = h, H) : renormalized Higgs self-energies *CP*-even fields can mix

 \Rightarrow complex roots of det $(M_{hH}^2(q^2))$: $\mathcal{M}_{h_i}^2(i=1,2)$: $\mathcal{M}^2 = M^2 - iM\Gamma$

Structure of higher-order corrections:

Dne-loop:
$$\Delta M_h^2 \sim m_t^2 \alpha_t \left[L + L^0 \right] , \quad L := \log \left(\frac{m_{\tilde{t}}}{m_t} \right)$$

Two-loop:
$$\Delta M_h^2 \sim m_t^2 \left\{ \alpha_t \alpha_s \left[L^2 + L + L^0 \right] + \alpha_t^2 \left[L^2 + L + L^0 \right] \right\}$$

Three-loop:

$$\Delta M_h^2 \sim m_t^2 \Big\{ \alpha_t \alpha_s^2 \Big[L^3 + L^2 + L + L^0 \Big] \\
+ \alpha_t^2 \alpha_s \Big[L^3 + L^2 + L + L^0 \Big] \\
+ \alpha_t^3 \Big[L^3 + L^2 + L + L^0 \Big] \Big\}$$

Partial results: [S. Martin '07] [R. Harlander, P. Kant, L. Mihaila, M. Steinhauser '08] [R. Harlander, J. Klappert, A. Ochoa, A. Voigt '18] \Rightarrow H3m/Himalaya

H3m adds $\mathcal{O}\left(\alpha_t \alpha_s^2\right)$ corrections to FeynHiggs Himalaya can be linked to other codes

Large $m_{\tilde{t}} \Rightarrow$ large $L \Rightarrow$ resummation of logs necessary \Rightarrow Method II

Advantages of Feynman-diagrammatic method:

- all contributions at fixed order are captured
- trivial to include many SUSY scales
- full control over Higgs boson self-energies \rightarrow needed for other quantities (production and decay)

Problems of Feynman-diagrammatic method:

- always only fixed order
- large logs not captured beyond the calculated order

Method II: EFT approach: Log resummation via RGE's:

Excellent overview paper: [P. Draper, G. Lee, C. Wagner, arXiv:1312.5743]

Simple example for log resummation:

SUSY mass scale: $M_{SUSY} = M_S \sim m_{\tilde{t}}$

Above M_{SUSY} : MSSM Below M_{SUSY} : SM

Relevant SM parameters: – quartic coupling λ

- top Yukawa coupling h_t ($\alpha_t = h_t^2/(4\pi)$)
- strong coupling constant g_s ($\alpha_s = g_s^2/(4\pi)$)
- **1.** Take: $h_t(m_t), g_s(m_t)$

SM RGEs for $h_t, g_s: h_t, g_s(m_t) \to h_t, g_s(M_S)$

- 2. Take $\lambda(M_S), h_t(M_S), g_s(M_S)$ SM RGEs for $\lambda, h_t, g_s: \lambda, h_t, g_s(M_S) \rightarrow \lambda, h_t, g_s(m_t)$
- 3. Evaluate M_h^2 $M_h^2 \sim 2\lambda(m_t)v^2$

Advantages of RGE log resummation:

- large logs taken into account to all orders
- calculation can easily be extended to very large scales

Problems of RGE log resummation:

- not all contributions at fixed order are captured
 - \rightarrow sub-leading logs more difficult
 - \rightarrow momentum dependence
- difficult (impossible?): include many different SUSY scales
- difficult (impossible?): control over Higgs boson self-energies \rightarrow needed for other quantities (production and decay)

The best of both worlds:

to get the most precise prediction of M_h :

Combination of FD and RGE result!

$$\Delta M_h^2 = (\Delta M_h^2)^{\mathsf{RGE}} (X_t^{\overline{\mathsf{MS}}}, M_S^{\overline{\mathsf{MS}}}, \overline{m}_t) - (\Delta M_h^2)^{\mathsf{FD}, \mathsf{log}} (X_t, M_S, \overline{m}_t)$$
$$M_h^2 = (M_h^2)^{\mathsf{FD}} + \Delta M_h^2$$

 \Rightarrow many² technical aspects and complications . . .

⇒ combination of best FD result with resummed LL, NLL corrections for large $m_{\tilde{t}}$ ⇒ most precise M_h prediction for large $m_{\tilde{t}}$ ⇒ first "hybrid code": FeynHiggs 2.10.0

[T. Hahn, S.H., W. Hollik, H. Rzehak, G. Weiglein '13]

\Rightarrow note the nice excess at \sim 400 GeV :-)

All channels and their experimental input:

Sven Heinemeyer – Snowmass 21: pMSSM meeting, virtual only, 11/04/2020

[HiggsSignals 2 '20]

pMSSM11: Going from 8 TeV to 13 TeV (and adding latest DM limits)

[2017]

\Rightarrow notice the "nose"! Do you have it?

pMSSM11: $m_{\tilde{t}_1} \text{-} m_{\tilde{\chi}^0_1}$ plane

\Rightarrow notice the compressed region! Do you have it?

Sven Heinemeyer – Snowmass 21: pMSSM meeting, virtual only, 11/04/2020

[2017]

pMSSM11: $m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0}$ plane

Sven Heinemeyer – Snowmass 21: pMSSM meeting, virtual only, 11/04/2020

[2017]

MasteRcope

pMSSM11: best-fit point parameters

[2017]

Parameter	With LHC 13 TeV and $(g-2)_{\mu}$		
	Best fit	'Nose' region	
M_1	$0.25 { m TeV}$	- 0.39 TeV	
M_2	0.25 TeV	$1.2 { m TeV}$	
M_3	- 3.86 TeV	- 1.7 TeV	
$m_{ ilde q}$	$4.0 \mathrm{TeV}$	$2.00 { m TeV}$	
$m_{ ilde{q}_3}$	$1.7 ~ \mathrm{TeV}$	$4.1 { m TeV}$	
$m_{ ilde{\ell}}$	$0.35~{ m TeV}$	$0.36 { m TeV}$	
$m_{ ilde{ au}}$	$0.46~{ m TeV}$	1.4 TeV	
M_A	$4.0 \mathrm{TeV}$	$4.2 { m TeV}$	
A	2.8 TeV	5.4 TeV	
μ	1.33 TeV	- 5.7 TeV	
an eta	36	19	
χ^2 /d.o.f.	22.1/20	24.46/20	
p-value	0.33	0.22	
$\chi^2(HS)$	68.01	67.97	

\Rightarrow excellent *p* value! \Rightarrow Much better than in GUT based models!

pMSSM11: best-fit point phenomenology

\Rightarrow heavy colored, light uncolored spectrum

[2017]

pMSSM11: full fit spectrum

\Rightarrow LHC Run 3 reach?

\Rightarrow HL-LHC reach?

[2017]