SQLITE Calibration Databases Update

H. Greenlee



Contents

e History and summary of previous updates.
« Libwda opaque data struct.

e New proposed updates.



Overview of Calibration Database Access 1n
[_arsoft

Calibration data are stored 1n a postgres interval-of-validity
database.

— Standard schemas exist for single-interval-of-validity (SIOV) and
multiple-interval-of-validity (MIOV) databases.

— MicroBooNE has 20 SIOV calibration databases.
Larsoft includes an art service DatabaseUtil for direct access.
— Little used.

Most (all?) larsoft calibration database access makes use of http
database servers.

In this talk, I consider the option of exporting calibration data to
an sqlite database (database-in-a-file).



Current Database Access Software Stack

Art Service

Provider

— o i

DatabaseRetrievalAlg

DBFolder

e }

|

libwda |oooooee

libcurl }-ooooiin

......... larevt

.......... ups product

.......... system library



Revised Database Access Software Stack

Art Service

Provider
P— [ i
- | DatabaseRetrievalAlg |
---------- larevt
DBFolder
o I — e B
sqlite libwda | ... ups products
libcurl |- system library




Historical Overview

The last presentation that I made on this topic was in the Mar. 10,
2020 larsoft coordination meeting.

At that meeting, I made two requests to the maintainers of libwda.

— Add ability to search for server certificates in a directory.

o This request was implemented in libwda v2_28_0.
- Expose libwda opaque data struct (make header public).
« This request was rejected (more about this issue later in this talk).
Because of the opaque data struct 1ssue, my proposed update to
larevt at that meeting was never merged 1nto larevt develop branch.

- Nevertheless, MicroBooNE did update our larevt MCC9 branch, in
which we cracked the libwda opaque data struct by copying the
header into DBFolder.cxx.

— MicroBooNE is using this version in production.



Previous Proposed Updates to Larevt

o Update DatabaseRetrievalAlg to add optional fcl parameter to
choose between libwda and sqlite database access.

— No update to individual providers or services is required, except fcl
configuration updates.

« Update DBFolder to have ability to read from either libwda or
sqlite.

— This update 1s minimal in the sense that libwda access code is
basically unchanged. Most changes are additions to read from sqlite.



New Proposed Updates to Larevt

« No additional proposed changes to DatabaseRetrieval Alg.
« Additional updates to DBFolder.

— Change caching strategy to switch from storing data using the libwda
opaque struct, to using a newly defined data structure.

— This 1s a more invasive change than the old proposal in the sense that
it affects both libwda and sqlite database access code.



How Libwda Works

« Libwda makes a database query by sending a specially formatted
url to the database server.

o The server replies with a long text string that 1s a list of comma-
separated values.

« Libwda chops the csv string into pieces and stores the resulting
substrings in a an opaque c-struct (shown on following slide).

— Struct header 1s hidden.

— Libwda provides its own api for retrieving binary data from the
opaque struct.



Libwda Opaque Struct

Start validity time

End Validity Time

Name 1 Name 2 Name 3 Name 4
Type 1 Type 2 Type 3 Type 4
Channel 1 Value Value Value
Channel 2 Value Value Value
Channel 3 Value Value Value

10



Libwda Opaque Struct

e The libwda struct 1s a dynamic two-dimensional array.

« All data 1s stored as strings.

— String-to-binary conversion happens when data is extracted using the
struct api.

« Libwda uses c-style memory management and c-style strings.

11



LLibwda Struct Issues

« DBFolder uses the libwda opaque struct to cache database data.

— This decision was made early before I got involved.

— The original author of DBFolder found it necessary to partially crack
the opaque struct.

o Adding sqlite capability made the opaque problem worse by
making it necessary to update the cache with data read from sqlite.

- Libwda does not supply an api to do this. The authors refused my
request to add one.

« Opaqueness 1s not the only problem.

— The current cache structure wastes memory by storing numeric
values as strings, and by dynamically allocating memory for each
value.

12



A Strategy for Solving All Libwda Struct
Issues

« Instead of using the libwda struct for its database cache, DBFolder
should use its own-defined data structure.

-~ Removes need to go beyond current libwda api or to crack the libwda
struct by copying the header (including the previously copied partial
header).

— Replacement data structure can be more memory-efficient.

« Store numeric data in binary format.
o Allocate memory for values at compile time.

— A key design question 1s how to store arbitrary-type values.

13



Storing Arbitrary-Iype Values in C++

char*®

This 1s what libwda does.

std::string

void*

Not type safe & no automatic destruction.

boost::any

Type safe & automatic destruction.

union

Memory allocated at compile time.

Not type safe & no automatic destruction.

boost::variant<T1, T2,...>

Type safe, memory allocated at compile time, automatic destruction.
boost::variant<long, double, char[])
boost::variant<long, double, std::string)

boost::variant<long, double, unique_ptr<std::string>>

14



Memory Considerations

char®, void*, unique_ptr<T>

— 8 bytes + dynamic memory.
std::string

— 32 bytes + dynamic memory.
union

— Size of largest data member.
boost::any

— 16 bytes + dynamic memory.

boost::variant<T1, T2, ...>

— 8 bytes + size of largest template type.

15



New Database Cache Class DBDataset

o In the branch I am proposing, I added a new class DBDataset,
which replaces the libwda struct as the database cache.

class DBDataset

{
public:

typedef boost::variant<long, double, std::

private:

IOVTimeStamp fBeginTime;
IOVTimeStamp fEndTime;
size_t fNRows;
size_t fNCols;
std::vector<std::string> fColNames;
std::vector<std::string> fColTypes;
std: :vector<DBChannelID_t> fChannels;
std::vector<value_type> fData;

bi

unique_ptr<std::string> > value_type;

IOV begin time.
IOV end time.
Number of rows.
Number of columns.
Column names.
Column types.
Channels.
Calibration data.

16



DBFolder Interface

The current version of DBFolder interface provides five typed
accessors.

int GetNamedChannelData(DBChannellD_t channel, const std::string& name, bool& data);

int GetNamedChannelData(DBChannellD_t channel, const std::string& name, long& data);

int GetNamedChannelData(DBChannellD_t channel, const std::string& name, double& data);

int GetNamedChannelData(DBChannellD_t channel, const std::string& name, std::string& data);

int GetNamedChannelData(DBChannellD_t channel, const std::string& name, std::vector<double>& data);

Boolean values are stored in DBDataset as integers (type long).

— Sqlite (unlike postgres) doesn't have a boolean data type.

The last accessor (type<double>, storing multiple values in one
database column) makes no sense to me.

— We don't use i1t to access MicroBooNE calibration data. I have no
way to test it.

— I removed this function in the merge branch.
— I can't be sure that no other experiment code is using it, though.

— This 1s the only significant interface change of DBFolder.

17



Implementation Status

The following merge branches are up to date with larsoft
v09_08_00 and ready to merge to develop from uboone fork.

— larevt: feature/greenlee_sqlite_develop

There are also some uboone suite merge branches.

— ubevt: feature/greenlee_sqlite_develop
— uboonedata: feature/greenlee_sqlite_develop
— uboonecode: feature/greenlee_sqlite_test_develop

Other experiments don't need to make any updates, in which case
they will continue to use libwda.

— To use sqlite, they will need to add sqlite databases and make fcl
updates.

In uboonecode, we have added integration tests to ensure that

sqlite databases get updated when new tags are added to postgres.

18



Validation Tests

« Event dumps of calibration data.

e Running O(1000) events in test mode.

— Read calibration data from libwda and sqlite and do binary
comparision.

o Compare plots from vanilla vO9_08_00 and updated larevt.

— Ran recol and reco2 on same data events.

19



Comparison Plots
Hits & Flashes

v09_08_00

hit_peakT htemp [ hit_charge {hit_charge<500} | htemp [ fisZcenter_simpleFlashBeam | htemp
=10 Entries 3.417471e+07 20002 Entries 3.36320e+07 = Entries 1443
W Mean 3179.825 1e00E- Mean 117.811 30 Mean 521.083
350k Std Dev 1829.813 g Std Dev 75.880 = Std Dev 277.545
E 1600 25E
300 14005 E
250F 1200= 20;
200 1000 15
E 800 F
150 E C
E 600 10
100 E C
E 400 C
E = 5
S0 2005 E
P =PI RN A SAIIN ISR AUAITIN IR B oF Ll | L Pl Y AR Ll Pl [
0 1000 2000 3000 4000 5000 6000 7000 0 100 200 300 400 500 0 200 400 600 1000
hit_peakT hit_charge flsZcenter_simpleFlashBeam
hit_peakT htemp [ hit_charge {hit_charge<500} | htemp [ fisZcenter_simpleFlashBeam | htemp
=10 Entries 3.417496e+07 20002 Entries 3.363317e+07 = Entries 1443
W Mean 3179.825 1e00E- Mean 117.811 30 Mean 521.083
350k Std Dev 1829.809 = Std Dev 75.880 £ Std Dev 277.545
E 1600 25E
300 14005 E
250F 1200= 20;
200 1000 15
E 800 F
150 E C
E 600 10
100 E C
E 400 C
E = 5
S0 2005 E
P =PI RN A SAIIN ISR AUAITIN IR B oF Ll | L Pl Y AR Ll Pl [
0 1000 2000 3000 4000 5000 6000 7000 0 100 200 300 400 500 0 200 400 600 1000
hit_peakT hit_charge flsZcenter_simpleFlashBeam

20



Comparison Plots
Tracks

v09_08_00

trkstartx_pandoraK ¥ Track)<1000} |htemp wkclodx |htemp

1400 Entries 56951 g Entries 4789778

- Mean 131.820 o= Mean 1.898

1200~ Std Dev 114.642 = Std Dev 1.353
1000/ 20

aoo:— 200F

600:— 150;

400i 100;

200; 50

0:‘w.u‘l.u‘l.‘H\.H‘l.u‘l.uw.uwH‘ 0 | \ L,
-50 0 50 100 150 200 250 300 0 2 4 [] 8 10
trkstartx_pandoraKalmanTrack trkdedx_pandoraKalmanTrack

trstartx_pandoraK; x Track)<1000} |htemp ket |htemp

1400= Entries 56968 g1 Entries 4821554

F Mean 131.874 a00F Mean 1.899

1200— Std Dev 114.606 c Std Dev 1.352
1000 2501

aooi 200—

s00r 150

4ooi 1002—

200 soff

0:‘w.u‘l.u‘l.‘H\.H‘l.u‘l.uw.uwH‘ 0 | \ L,
-50 0 50 100 150 200 250 300 0 2 4 0

6 8 1
trkstartx_pandoraKalmanTrack trkdedx_pandoraKalmanTrack



Database Conversion Scripts

o For the record, MicroBooNE's postgres conversion scripts can be

found in redmine repositiry ubutil/scripts (branch develop or
v08_00_00_br).

— slov_extracter.py

— slov_extracter_sparsify.py

22



Summary

« Larevt branch greenlee_sqlite_develop from uboone github fork 1s
ready to merge to larsoft develop branch.

— I haven't made a pull request yet.

— Caveat whether vector<double> DBFolder accessor is actually
needed by experiments other than MicroBooNE.

23



	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

