
1

SQLITE Calibration Databases Update

Larsoft Coordination Meeting
Nov. 3, 2020

H. Greenlee

2

Contents

● History and summary of previous updates.
● Libwda opaque data struct.
● New proposed updates.

3

Overview of Calibration Database Access in
Larsoft

● Calibration data are stored in a postgres interval-of-validity
database.
– Standard schemas exist for single-interval-of-validity (SIOV) and

multiple-interval-of-validity (MIOV) databases.
– MicroBooNE has 20 SIOV calibration databases.

● Larsoft includes an art service DatabaseUtil for direct access.
– Little used.

● Most (all?) larsoft calibration database access makes use of http
database servers.

● In this talk, I consider the option of exporting calibration data to
an sqlite database (database-in-a-file).

4

Current Database Access Software Stack

Art Service

Provider

DatabaseRetrievalAlg

DBFolder

libwda

libcurl

larevt

ups product

system library

5

Revised Database Access Software Stack

Art Service

Provider

DatabaseRetrievalAlg

DBFolder

libwda

libcurl

larevt

ups products

system library

sqlite

6

Historical Overview

● The last presentation that I made on this topic was in the Mar. 10,
2020 larsoft coordination meeting.

● At that meeting, I made two requests to the maintainers of libwda.
– Add ability to search for server certificates in a directory.

● This request was implemented in libwda v2_28_0.
– Expose libwda opaque data struct (make header public).

● This request was rejected (more about this issue later in this talk).
● Because of the opaque data struct issue, my proposed update to

larevt at that meeting was never merged into larevt develop branch.
– Nevertheless, MicroBooNE did update our larevt MCC9 branch, in

which we cracked the libwda opaque data struct by copying the
header into DBFolder.cxx.

– MicroBooNE is using this version in production.

7

Previous Proposed Updates to Larevt

● Update DatabaseRetrievalAlg to add optional fcl parameter to
choose between libwda and sqlite database access.
– No update to individual providers or services is required, except fcl

configuration updates.
● Update DBFolder to have ability to read from either libwda or

sqlite.
– This update is minimal in the sense that libwda access code is

basically unchanged. Most changes are additions to read from sqlite.

8

New Proposed Updates to Larevt

● No additional proposed changes to DatabaseRetrievalAlg.
● Additional updates to DBFolder.

– Change caching strategy to switch from storing data using the libwda
opaque struct, to using a newly defined data structure.

– This is a more invasive change than the old proposal in the sense that
it affects both libwda and sqlite database access code.

9

How Libwda Works

● Libwda makes a database query by sending a specially formatted
url to the database server.

● The server replies with a long text string that is a list of comma-
separated values.

● Libwda chops the csv string into pieces and stores the resulting
substrings in a an opaque c-struct (shown on following slide).
– Struct header is hidden.
– Libwda provides its own api for retrieving binary data from the

opaque struct.

10

Libwda Opaque Struct

Start validity time

End Validity Time

Name 1 Name 2 Name 3 Name 4

Type 1 Type 2 Type 3 Type 4

Channel 1 Value Value Value

Channel 2 Value Value Value

Channel 3 Value Value Value

11

Libwda Opaque Struct

● The libwda struct is a dynamic two-dimensional array.
● All data is stored as strings.

– String-to-binary conversion happens when data is extracted using the
struct api.

● Libwda uses c-style memory management and c-style strings.

12

Libwda Struct Issues

● DBFolder uses the libwda opaque struct to cache database data.
– This decision was made early before I got involved.
– The original author of DBFolder found it necessary to partially crack

the opaque struct.
● Adding sqlite capability made the opaque problem worse by

making it necessary to update the cache with data read from sqlite.
– Libwda does not supply an api to do this. The authors refused my

request to add one.
● Opaqueness is not the only problem.

– The current cache structure wastes memory by storing numeric
values as strings, and by dynamically allocating memory for each
value.

13

A Strategy for Solving All Libwda Struct
Issues

● Instead of using the libwda struct for its database cache, DBFolder
should use its own-defined data structure.
– Removes need to go beyond current libwda api or to crack the libwda

struct by copying the header (including the previously copied partial
header).

– Replacement data structure can be more memory-efficient.
● Store numeric data in binary format.
● Allocate memory for values at compile time.

– A key design question is how to store arbitrary-type values.

14

Storing Arbitrary-Type Values in C++
● char*

– This is what libwda does.
● std::string

● void*

– Not type safe & no automatic destruction.
● boost::any

– Type safe & automatic destruction.
● union

– Memory allocated at compile time.
– Not type safe & no automatic destruction.

● boost::variant<T1, T2,...>

– Type safe, memory allocated at compile time, automatic destruction.
– boost::variant<long, double, char[])
– boost::variant<long, double, std::string)
– boost::variant<long, double, unique_ptr<std::string>>

15

Memory Considerations

● char*, void*, unique_ptr<T>
– 8 bytes + dynamic memory.

● std::string
– 32 bytes + dynamic memory.

● union
– Size of largest data member.

● boost::any
– 16 bytes + dynamic memory.

● boost::variant<T1, T2, ...>
– 8 bytes + size of largest template type.

16

New Database Cache Class DBDataset

● In the branch I am proposing, I added a new class DBDataset,
which replaces the libwda struct as the database cache.

class DBDataset
{
public:

 typedef boost::variant<long, double, std::unique_ptr<std::string> > value_type;

 ...

private:

 IOVTimeStamp fBeginTime; // IOV begin time.
 IOVTimeStamp fEndTime; // IOV end time.
 size_t fNRows; // Number of rows.
 size_t fNCols; // Number of columns.
 std::vector<std::string> fColNames; // Column names.
 std::vector<std::string> fColTypes; // Column types.
 std::vector<DBChannelID_t> fChannels; // Channels.
 std::vector<value_type> fData; // Calibration data.
};

17

DBFolder Interface
● The current version of DBFolder interface provides five typed

accessors.

● Boolean values are stored in DBDataset as integers (type long).
– Sqlite (unlike postgres) doesn't have a boolean data type.

● The last accessor (type<double>, storing multiple values in one
database column) makes no sense to me.
– We don't use it to access MicroBooNE calibration data. I have no

way to test it.
– I removed this function in the merge branch.
– I can't be sure that no other experiment code is using it, though.
– This is the only significant interface change of DBFolder.

 int GetNamedChannelData(DBChannelID_t channel, const std::string& name, bool& data);
 int GetNamedChannelData(DBChannelID_t channel, const std::string& name, long& data);
 int GetNamedChannelData(DBChannelID_t channel, const std::string& name, double& data);
 int GetNamedChannelData(DBChannelID_t channel, const std::string& name, std::string& data);
 int GetNamedChannelData(DBChannelID_t channel, const std::string& name, std::vector<double>& data);

18

Implementation Status

● The following merge branches are up to date with larsoft
v09_08_00 and ready to merge to develop from uboone fork.
– larevt: feature/greenlee_sqlite_develop

● There are also some uboone suite merge branches.
– ubevt: feature/greenlee_sqlite_develop
– uboonedata: feature/greenlee_sqlite_develop
– uboonecode: feature/greenlee_sqlite_test_develop

● Other experiments don't need to make any updates, in which case
they will continue to use libwda.
– To use sqlite, they will need to add sqlite databases and make fcl

updates.
● In uboonecode, we have added integration tests to ensure that

sqlite databases get updated when new tags are added to postgres.

19

Validation Tests

● Event dumps of calibration data.
● Running O(1000) events in test mode.

– Read calibration data from libwda and sqlite and do binary
comparision.

● Compare plots from vanilla v09_08_00 and updated larevt.
– Ran reco1 and reco2 on same data events.

20

Comparison Plots
Hits & Flashes

v09_08_00

Patched

21

Comparison Plots
Tracks

v09_08_00

Patched

22

Database Conversion Scripts

● For the record, MicroBooNE's postgres conversion scripts can be
found in redmine repositiry ubutil/scripts (branch develop or
v08_00_00_br).
– siov_extracter.py
– siov_extracter_sparsify.py

23

Summary

● Larevt branch greenlee_sqlite_develop from uboone github fork is
ready to merge to larsoft develop branch.
– I haven't made a pull request yet.
– Caveat whether vector<double> DBFolder accessor is actually

needed by experiments other than MicroBooNE.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

