

Canada's Capital University

BSM Physics with Bottomonium: Light Higgs searches from χ_{b0} decay

Stephen Godfrey & Heather Logan Carleton University

S. Godfrey and H. Logan, PRD93, 055014(2016) [1510.04659]

1. Introduction

SuperKEKB/ Belle-II offers a new era in high-statistics studies of Scalar bottomonium via radiative Υ decays $\Upsilon \to \gamma \chi_{b0}$

- 250 fb⁻¹ on $\Upsilon(3S) \to 5.9 \times 10^7 \chi_{b0}(2P) + 2.7 \times 10^6 \chi_{b0}(1P)$
- 250 fb⁻¹ on $\Upsilon(2S) \to 6.2 \times 10^7 \chi_{b0}(1P)$

 χ_{b0} has the same spin and CP quantum #'s as the Higgs. Can its decays be used to probe (BSM) Higgs Physics?

Precedents:

- $B^+ \to \tau^+ \nu$ sensitive to s-channel charged Higgs [Hou PRD48 2342 (1993)]
- $\eta_b \to \tau^+ \tau^-$ sensitive to s-channel CP-odd Higgs

 [Rashed et al PRD82 054031 (2010)]
- $\Rightarrow \chi_{b0} \to \tau^+ \tau^-$ should be sensitive to s-channel CP-even Higgs [Haber Kane & Sterling NPB161 483 (1979)]

Light Higgs searches from χ_{b0} decay

$$\Upsilon \to \gamma \chi_{b0} \to \gamma \tau^+ \tau^-$$

Estimate sensitivity of BR of $\chi_{b0} \to \tau^+ \tau^-$ to s-channel Higgs from $\Upsilon \to \gamma \chi_{b0} \to \gamma \tau^+ \tau^-$

Will find can constrain parameter space of Type II 2HDM in which the scalar couplings to $b\bar{b}$ and $\tau^+\tau^-$ can be enhanced

Need:

- Estimate of χ_{b0} decay constant
- Calculate branching ratios
- Any competing SM processes:
 - $\chi_{b0} \to \tau^+ \tau^-$ via 2-photon intermediate state
- Irreducible backgrounds

•
$$e^+e^- \rightarrow \gamma \tau^+\tau^-$$

χ_{b0} decay constant

The matrix element $\chi_{b0} \to \tau^+ \tau^-$ is given by:

$$\mathcal{M}^{H} = \langle \ell^{+} \ell^{-} | \frac{m_{\ell}}{v} \bar{\ell} \ell | 0 \rangle \frac{i}{M_{H}^{2}} \langle 0 | \frac{m_{q}}{v} \bar{q} q | \chi_{0} \rangle = -\left(\frac{m_{q} m_{\ell}}{v^{2} M_{H}^{2}}\right) f_{\chi_{0}} \bar{u}(p_{\ell^{-}}) v(p_{\ell^{+}}),$$

where
$$\langle 0 | \bar{q}q \mid M(\vec{K}) \rangle = i f_{\chi_0}$$

So need f_{χ_0} which was calculated the *mock meson* approach which in the non-relativistic limit is:

$$f_{\chi_{b0}} = -\frac{3\sqrt{3M_{\chi_{b0}}}}{\sqrt{\pi}\tilde{m}_b}R'(0) = \begin{cases} -4.17 \text{ GeV}^2 & \text{for } \chi_{b0}(1P) \\ -4.31 \text{ GeV}^2 & \text{for } \chi_{b0}(2P) \end{cases}$$

Partial widths and BR's for SM

For the standard model (with Higgs exchange):
$$\Gamma^{H}(\chi_{0} \to \ell^{+}\ell^{-}) = \frac{M_{\chi_{0}}}{8\pi} \left[1 - \frac{4m_{\ell}^{2}}{M_{\chi_{0}}^{2}} \right]^{3/2} \left(\frac{m_{q}m_{\ell}}{v^{2}M_{H}^{2}} \right)^{2} f_{\chi_{0}}^{2}$$
$$= \begin{cases} 4.3 \times 10^{-16} \text{ GeV} & \text{for } \chi_{b0}(1P) \\ 4.8 \times 10^{-16} \text{ GeV} & \text{for } \chi_{b0}(2P) \end{cases}$$

To estimate BR's need total widths which which we estimate using measured BR's for radiative transitions with theory estimates of partial widths

$$\Gamma_{\chi_{b0}(1P)}^{tot} = 1.35 \text{ MeV}, \qquad \Gamma_{\chi_{b0}(2P)}^{Tot} = (247 \pm 93) \text{ keV}$$

Putting together we obtain:

$$BR^{H}(\chi_{b0}(1P) \to \tau^{+}\tau^{-}) = 3.1 \times 10^{-13}$$

$$BR^{H}(\chi_{b0}(2P) \to \tau^{+}\tau^{-}) = (1.9 \pm 0.5) \times 10^{-12}$$

With $O(10^7)$ events in 250 fb⁻¹ SM BR too small Snowmass 2020 RF7- Opportunities in Hadron Spectroscopy workshop Nov 18, 2020

Partial widths and BR's for 2 HDM

Can s-channel Higgs contribution be enhanced?

Yes! In Type II 2HDM the scalar couplings to b-quarks and τ leptons are enhanced for large values of tan β which is the ratio of vev's of the two Higgs doublets

Two Higgs doublets: Φ_1 and Φ_2

Both contribute to electroweak symmetry breaking with $v_1^2 + v_2^2 = v_{SM}^2$ $v_2/v_1 = \tan \beta$

- U-type quark mass from Φ₂ coupling strength m_u/v₂
- D-type quark, lepton masses from Φ_1 coupling strength m_{d_1}/v_1

Partial widths and BR's for 2 HDM

The model has

- 2 CP-even neutral Higgs
- 1 CP-odd neutral Higgs
- Pair of charged Higgs
- Identify with the 125 GeV object and the 2nd can be heavier or lighter

In this limit where the 125 GeV object is exactly SM-like

$$H_{new}\bar{u}u = -i\frac{m_u}{v}[1 \mp \cot \beta] \qquad H_{new}\bar{d}d(\bar{\ell}\ell) = -i\frac{m_{d(\ell)}}{v}[\mp \tan \beta]$$

Large $tan\beta$ -> large enhancement of $H_{new}bb$ and $H_{new}\tau\tau$ couplings

Partial widths and BR's for 2 HDM

The Higgs exchange matrix element gets modified by:

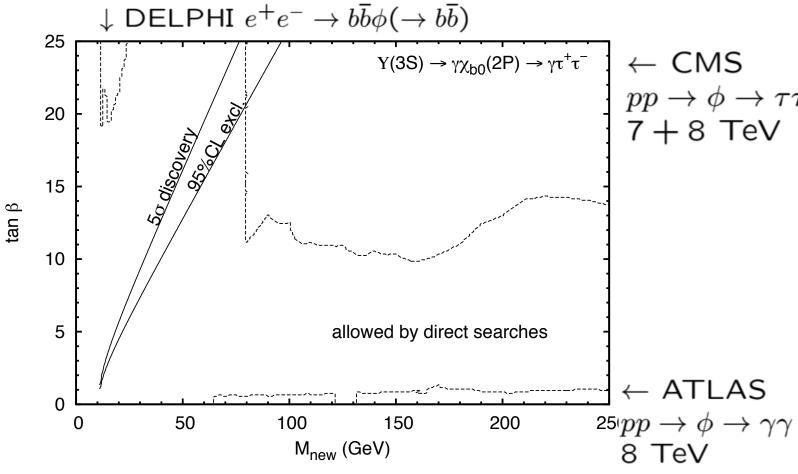
$$\left(\frac{m_b m_{\tau}}{v^2 M_H^2}\right)^2 \to \left(\frac{m_b m_{\tau}}{v^2 M_H^2}\right)^2 \left[1 + \frac{M_H^2}{M_{new}^2 - M_{\chi_{b0}}^2} \tan^2 \beta\right]^2$$

So the partial width is modified by:

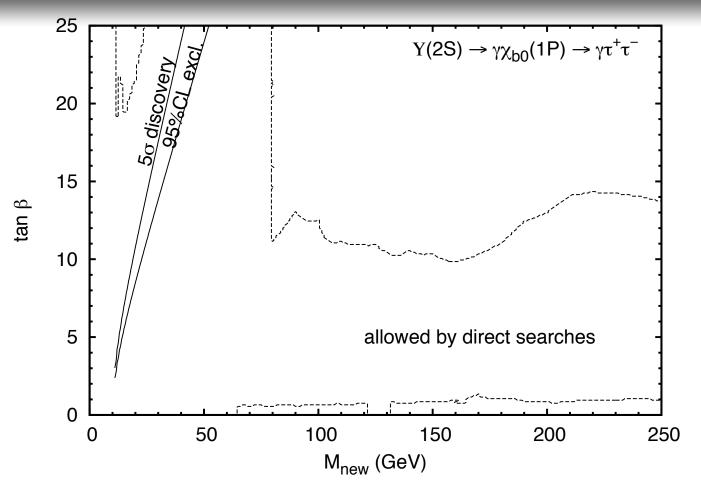
$$\Gamma(\chi_{b0} \to \tau^+ \tau^-) = \Gamma^{SM}(\chi_{b0} \to \tau^+ \tau^-) \times \left[1 + \frac{M_H^2}{M_{new}^2 - M_{\chi_{b0}}^2} \tan^2 \beta \right]^2$$

An enhancement of $(M_H/M_{H_{new}}) \tan \beta \sim 30$

gives ~ 100 signal events in $\Upsilon \to \gamma \chi_{b0}(2P) \to \gamma \tau^+ \tau^-$


Experimental Strategy

Parent	Daughter	E_{γ}	δE_{γ}	$d\sigma_B/dE_\gamma$	$\overline{N_B}$
$\Upsilon(3S)$	$\chi_{b0}(2P)$	122 MeV	0.24 MeV	36 fb/MeV	4320
$\Upsilon(3S)$	$\chi_{b0}(1P)$	484 MeV	1.3 MeV	8.8 fb/MeV	5720
$\Upsilon(2S)$	$\chi_{b0}(1P)$	163 MeV	1.3 MeV	30 fb/MeV	19500


- Tag photon energies E_{γ} in Υ center-of-mass frame
- Linewidth $\delta \mathsf{E}_{\scriptscriptstyle \gamma}$ of the photon peak determined by χ_{b0} width
- continuum $e^+e^- \to \gamma \tau^+ \tau^-$ background: $d\sigma_B/dE_\gamma$ computed at E_{γ} using Madgraph
- Ignore reducible background for $\Upsilon \to \gamma \chi_{b0}$, $\chi_{b0} \to \text{not } \tau \tau$
- Number, N_B of continuum background events in window $2\delta E_{\gamma}$ centered at photon peak with 250 fb⁻¹ luminosity at Υ peak Snowmass 2020 RF7- Opportunities in Hadron Spectroscopy workshop Nov 18, 2020

Results

The number of signal events grows with tan β 5 σ limits and 95% CL exclusion (based on irreducible background)

Results

 ${\rm H_{new}}$ below 10 GeV generally excluded by $\,\Upsilon \to \gamma H_{new}$

Summary

- SuperKEKB /Belle-II offers high statistics sample of bottomonia
- χ_{b0} is a CP-even neutral scalar so χ_{b0} -> $\tau\tau$ is sensitive to light CP-even neutral Higgs with enhanced bb, $\tau\tau$ couplings
- Propose to to put constraints on 2HDM using radiative decays of Y(3S) to χ_{b0} -> τ^+ τ^-
- 250 fb⁻¹ on the Y(3S) can exclude M_{new} <80 GeV for tan β >20
- 250 fb⁻¹ on the Y(2S) can exclude M_{new} <40 GeV for tan β >20
- Prospects for improvement with smarter kinematic selection to suppress e⁺e⁻ ->ττγ</sup> background
- Future work is to look at μ⁺μ⁻ final states