Exotic Hadron Production in High Color Density Environment

Yen-Jie Lee

RF07: Opportunity in Hadron Spectroscopy 18 November, 2020

MIT HIG group's work was supported by US DOE-NP

Introduction

BELLE PRL 91, 262001 (2003)

PRL 98, 132002 (2007) PRL 110, 222001 (2013)

Hybrid

X(3872): Observed by BELLE (2003), its internal structure is still under debate

- Also known as $\chi_{c1}(3872)$
- Quantum number determined by CDF and LHCb data: JPC=1++
- Charmonium state: abandoned, predict wrong mass with JPC=1++
- Remaining possibilities:
 - D-D^{*} hadron molecule:mass X(3872) ≈ D(1875)D^{*}(2007), large & extended state
 - Tetraquark: a compact four quark state
 - Hybrid: mixed molecule-charmonium state

 $D^0 - \overline{D}^{*0}$ molecule

Probe the nature of X(3872)

Esposito et al, arXiv: 2006.15044

3

Snow Mass 2021

 \overline{D}^{*0}

Probe the nature of X(3872) with comoving particles

Smaller dissociation probability

Larger dissociation probability

Esposito et al, arXiv: 2006.15044

Exotic Hadron Production in High Color Density Environment

Snow Mass 202

Upsilon Suppression in High Multiplicity Events

• Origin of the sequential suppression in high multiplicity pp events?

Yen-Jie Lee (MIT)

Exotic Hadron Production in High Color Density Environment

Invariant Mass Spectra in pp Collisions at 7 TeV

Exotic Hadron Production in High Color Density Environment

SnowMass2021

⁷

X(3872) in High Multiplicity pp from LHCb

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

hadrons due to smaller binding energy?

Non-prompt X(3872) in pp from LHCb

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

- X(3872) from b decays seems to follow a different trend
- Look forward to the future high multiplicity data from pA collisions

5now Mas

9

DZero measurement in pp

- Normalized isolation distribution (1 = fully isolated, no other activities in a cone $\Delta R < 1$)
- Modest support for the hypothesis that increased hadronic activity near X(3872) depresses its production
 PRD 102, 072005 (2020)

Snow Mass 2

X(3872) in PbPb?

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

Exotic Hadron Production in High Color Density Environment

11

Invariant Mass Spectra in PbPb Collisions at 5 TeV

12

Ratio of X(3872) to $\psi(2S)$ Yields in pp and PbPb

$$R = N_{X(3872)}^{(\text{Corr})} / N_{\psi(2S)}^{(\text{Corr})}$$

In PbPb collisions:

$$R = 1.10 \pm 0.51 \text{ (stat.)} \pm 0.53 \text{ (syst.)}$$

Indication of R enhancement in PbPb collisions with respect to pp at 7 and 8 TeV

CMS-PAS-HIN-19-005

Ratio of X(3872) to $\psi(2S)$ Yields in pp and PbPb

Exotic Hadron Production in High Color Density Environment

X(3872) Production

Status of current X(3872) theoretical calculations in heavy-ion collisions

Coalescence model

AMPT transport model

TAMU transport model

- Molecule easier to be produced w/ recombination of quarks in medium
- ► N_{Molecule} > N_{Tetraquark}

Compilation from Jing Wang (MIT)

Yen-Jie Lee (MIT)

- Molecule production per event decreases from central to peripheral
- Tetraquark no centrality dependence
- ► NMolecule > NTetraquark

Exotic Hadron Production in High Color Density Environment

- Molecule (more loosely bound) regenerated later in the evolution compared to tetraquark
- ► NMolecule < NTetraquark

15

SnowMass202

Unresolved Issues

00

<u>0*0</u>

1. What is the role of multiplicity selection bias?

2. Need to improve the accuracy of the current data

Tetraquark (4q)

3. Consistency between theoretical calculations: Relevance of coalescence hadronization, model dependence and absolute branching fractions

Charmonium

Unresolved Issues

1. What is the role of multiplicity selection bias?

- Change the source of comoving particles using ep, eA, pp, pA collisions
- 2. Need to improve the accuracy of the current data
 - Larger dataset from Run 3 and Run 4 at the LHC
- 3. Consistency between theoretical calculations: Relevance of coalescence hadronization, model dependence and absolute branching fractions
 - Stress test with system size scan: from ep, eA, pp, pO, OO to PbPb
 - Centrality dependence

17

LHC, RHIC and EIC Timeline

A next-generation LHC heavy-ion experiment

- Proposed after Run 5, optimized for heavy flavor meson and baryon reconstruction; detection of very low p_T charged particles
- Wide pseudorapidity coverage (up to 4 units), most likely equipped with forward tracking stations
- Could shed new light on the nature and structure of the X, Y, Z
- X(3872) yield is expected to be particularly enhanced at low transverse momenta (p_T<4 GeV/c)

See this documentation for details (Link)

19

Snow Mass 202

Relative Modification of X(3872) / ψ (2S) at EIC

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^X}{\sigma_{eA}^\psi} / \frac{\sigma_{ep}^X}{\sigma_{ep}^\psi}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.

Matt Durham (LANL)

SnowMas

- The EIC has the potential to provide decisive discrimination between exotic structure models.
 - X(3872) is only an example, technique can be applied to other exotics as well.
 - This work is supported by LANL Lab Directed R&D

* See Matt Durham's presentation in EF06/07 meeting (Link)

20

Summary

Exotic Hadron Production in High Color Density Environment

Thank You!

Backup Slides

Proposed plan from sPHENIX

Table 8.2: Summary of Au+Au at 200 GeV running in the sPHENIX Beam Use Proposal. The recorded luminosity (Rec. Lum.) and first sampled luminosity (Samp. Lum.) values are for collisions with z-vertex |z| < 10 cm.

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7 (5.7) \mathrm{nb^{-1}}$	$4.5 (6.9) \text{ nb}^{-1}$
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Table 8.3: Summary of p+p at 200 GeV running in the sPHENIX Beam Use Proposal. The recorded luminosity (Rec. Lum.) and sampled luminosity (Samp. Lum.) values are for collisions with z-vertex |z| < 10 cm.

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z < 10 cm
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	

Optimistic scenario

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	$80 \ \mathrm{pb^{-1}}$
					80 pb ⁻¹ [100%- <i>str</i>]	
_	O+O	200	_	2	$18 \ \mathrm{nb}^{-1}$	37 nb^{-1}
					37 nb ⁻¹ [100%-str]	
_	Ar+Ar	200	_	2	6 nb^{-1}	12 nb^{-1}
					$12 \text{ nb}^{-1} [100\%\text{-}str]$	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%-str/DeMux]	30 nb^{-1}

Snow Mass 2021

LHCb HI samples

Fixed-target mode samples

- Large variety of samples to study ! *
- **Two new samples** : PbNe at $\sqrt{s_{NN}}$ = 68.6 GeV and PbPb at $\sqrt{s_{NN}}$ = 5.02 TeV *

Benjamin Audurier (QM'19)

Yen-Jie Lee (MIT)

X(3872) peak in LHCb pPb sample

Charmonium R_{AA} in PbPb and pp

• Final state effects from comoving (local) medium?

pPb arXiv:1805.02248

Exotic Hadron Production in High Color Density Environment

Snow Mass 2021

Upsilon suppression

• Origin of the sequential suppression in high multiplicity pp events?