Atomic layer deposition of superconducting films and multilayers for SRF

Jeffrey A. Klug¹, Thomas Proslier¹, Nicholas G. Becker¹,², Helmut Claus¹, Jeffrey W. Elam³, James Norem⁴, John F. Zasadzinski², and Michael J. Pellin¹

¹ Materials Science Division, Argonne National Laboratory
² Department of Physics, Illinois Institute of Technology
³ Energy Systems Division, Argonne National Laboratory
⁴ High Energy Physics Division, Argonne National Laboratory

* This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357 and by the American Recovery and Reinvestment Act (ARRA) through the US Department of Energy, Office of High Energy Physics Department of Science.

SRF 2011, Chicago, IL
Multilayer thin films for SRF

- Potential path to high E_{acc} and high Q_0
Atomic layer deposition (ALD)

A thin film synthesis process based on sequential, self-limiting surface reactions between vapors of chemical precursors and a solid surface to deposit films in an atomic layer-by-layer manner.

Advantages:
- Atomic-level control of thickness and composition
- Smooth, continuous, pinhole-free coatings on large area substrates
- No line-of-sight limits → excellent conformality over complex shaped surfaces

Coat inside Nb SRF cavity with precise, layered structure → ALD
ALD thin film materials

- Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride

- Element
- Carbide
- Fluoride
- Dopant
ALD superconductors?

- Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride
- Element
- Carbide
- Fluoride
- Dopant

Except in one paper, superconductivity has been ignored...
- Reported $T_c = 10$ K for NbN [Hiltunen, et al., Thin Solid Films 166, 149 (1988)]
Superconductors by ALD

Goal for SRF is a material with a T_c higher than bulk Nb (9.2 K)

- **Niobium Silicide: NbSi**
 - $\text{NbF}_5 + \text{Si}_2\text{H}_6$
 - $\text{NbF}_5 + \text{SiH}_4$

- **Niobium Carbide: NbC**
 - $\text{NbF}_5 + \text{Al(CH}_3\text{)}_3$
 - $\text{NbCl}_5 + \text{Al(CH}_3\text{)}_3$

- **Niobium Carbo-Nitride: NbC$_{1-x}$N$_x$**
 - $\text{Al(CH}_3\text{)}_3 + \text{NbF}_5 + \text{NH}_3$
 - $\text{Al(CH}_3\text{)}_3 + \text{NbCl}_5 + \text{NH}_3$

- **Molybdenum Nitride: MoN**
 - $\text{MoCl}_5 + \text{NH}_3$
 - $\text{MoCl}_5 + \text{Zn} + \text{NH}_3$

- **Niobium Titanium Nitride: Nb$_{1-x}$Ti$_x$N**
 - $(\text{NbF}_5, \text{TiCl}_4) + \text{NH}_3$
 - $(\text{NbCl}_5, \text{TiCl}_4) + \text{Zn} + \text{NH}_3$

- **Iron Selenide: FeSe$_x$**
 - $\text{FeCl}_3 + \text{Se(Et}_3\text{Si)}_2$
Superconductors by ALD

Goal for SRF is a material with a T_c higher than bulk Nb (9.2 K)

- **Niobium Silicide: NbSi**
 - $\text{NbF}_5 + \text{Si}_2\text{H}_6$
 - $\text{NbF}_5 + \text{SiH}_4$

- **Niobium Carbide: NbC**
 - $\text{NbF}_5 + \text{Al(CH}_3)_3$
 - $\text{NbCl}_5 + \text{Al(CH}_3)_3$

- **Niobium Carbo-Nitride: NbC$_{1-x}$N$_x$**
 - $\text{Al(CH}_3)_3 + \text{NbF}_5 + \text{NH}_3$
 - $\text{Al(CH}_3)_3 + \text{NbCl}_5 + \text{NH}_3$

- **Molybdenum Nitride: MoN**
 - $\text{MoCl}_5 + \text{NH}_3$
 - $\text{MoCl}_5 + \text{Zn} + \text{NH}_3$

- **Niobium Titanium Nitride: Nb$_{1-x}$Ti$_x$N**
 - $(\text{NbF}_5, \text{TiCl}_4) + \text{NH}_3$
 - $(\text{NbCl}_5, \text{TiCl}_4) + \text{Zn} + \text{NH}_3$

- **Iron Selenide: FeSe$_x$**
 - $\text{FeCl}_3 + \text{Se(ET}_3\text{Si)}_2$
Viscous flow ALD reactor

Key features:

- Inconel 600 reactor tube (superior corrosion resistance)
 - Halide precursors (NbCl$_5$, TiCl$_4$, etc.)
- All-welded precursor inlet manifold (reduced sites for potential leaks)
 - Oxygen contamination in nitride films
Thin film characterization

- X-ray photoemission spectroscopy (XPS)
- X-ray reflectivity (XRR)
- X-ray diffraction (XRD)
- Synchrotron grazing-incidence x-ray diffraction (GIXRD)
- Scanning electron microscopy (SEM)
- Transmission electron microscopy (TEM)
- DC electrical transport (down to 1.6 K)
- SQUID magnetometry

- Atom probe tomography (APT) [Seidman, NU]
- Rutherford backscattering spectroscopy (RBS) [Evans Analytical]
Molybdenum nitride: MoN

Effects of intermittent Zn pulse

- Chemistry: MoCl$_5$ + NH$_3$ versus MoCl$_5$ + Zn + NH$_3$ at 450°C
- Hexagonal MoN in both cases, higher density & change in texture with Zn
MoN: Superconducting T_c (SQUID)

Addition of Zn leads to:

- ~2x increase in T_c (equivalent thickness)
 - Peak $T_c = 7.5$ K for 25 nm film

- Decrease in RT resistivity
 - 200 $\mu\Omega$-cm without Zn
 - 120 $\mu\Omega$-cm with Zn

- No chlorine, zinc observed by XPS
- Could be related to film density
 - 88-93% of bulk (9.2 g/cm3)
- Could be due to hydrogen:

 Without Zn: $\text{MoCl}_5 + 3\text{NH}_3 \rightarrow \text{MoN} + 5\text{HCl} + \text{N}_2 + 2\text{H}_2$

 With Zn: $\text{MoCl}_5 + \text{Zn} + \text{NH}_3 \rightarrow \text{MoN} + \text{ZnCl}_2 + 3\text{HCl}$
Niobium titanium nitride: Nb$_{1-x}$Ti$_x$N

- Chemistry: (NbCl$_5$:TiCl$_4$) + Zn + NH$_3$ at 450°C, 500°C
- Can vary Ti content with NbCl$_5$:TiCl$_4$ ratio (1:2 ~ 20% TiN)
 - Cubic δ phase in all films

With increasing TiN
- Peaks shift to higher angle
- Density decreases
 - 7.2 g/cm3 (1:0)
 - 5.7 g/cm3 (1:4)
- RT resistivity decreases
 - 380 μΩ·cm (1:0)
 - 130 μΩ·cm (1:4)

Impurity content: 0.05 atom % Cl

Are they good superconductors?
Optimized growth of Nb$_{1-x}$Ti$_x$N

- Achieved superconducting T_c=14 K, **40% higher than any other ALD film**
- Nearly 5 K higher than Nb
Nb$_{1-x}$Ti$_x$N-based superconductor-insulator structures

Aluminum nitride: AlN
- Oxygen-free insulator, stable interface with Nb(Ti)N
- Good thermal conductivity (285 W/m-K)
- Similar structure to Nb(Ti)N
 - 0.27% mismatch between in-plane spacing of (0001)-oriented AlN and (111)-oriented NbN
- Can be grown with AlCl$_3$ and NH$_3$ at same temperature as Nb(Ti)N
 - No thermal cycling between deposition steps

- NbN/AlN multilayers grown previously by sputtering
Nb_{1-x}Ti_{x}N / AlN: X-ray reflectivity

- Density ~5% higher with AlN
- Roughness ~2x higher with AlN
- Change in thickness/cycles (difference in nucleation delay)
Nb\(_{1-x}\) Ti\(_x\)N / AlN multilayers

- 40 nm Nb\(_{0.8}\)Ti\(_{0.2}\)N / 15 nm AlN (single bilayer and 2x stack)
- 80 nm Nb\(_{0.8}\)Ti\(_{0.2}\)N / 30 nm AlN (single bilayer and 2x stack)
 - Quartz, Si(001), 100 nm SiO\(_2\)/Si(001), 30 nm Nb/Sapphire, and cavity-grade Nb

Optimized Nb\(_{1-x}\) Ti\(_x\)N/AlN ALD growth process (\(T_c = 14\) K) is now ready for coating Nb SRF cavities
- Will enable testing the effects of S-I multilayer on cavity performance

![Graph showing magnetization vs. temperature](image-url)
Scaling ALD to coat cavities

New ALD system currently being assembled

- Clean room 100 environment
- Up to 650°C in UHV (10e-8 Torr)
- *In situ* processing
- Accommodate single-cell ILC cavities

Klug | SRF2011 Hot Topic: Medium Field Q-slope and Paths to high-Q operation | 26 July 2011
Fe-based superconductors: Initial studies of FeSe$_x$

Promising new Fe-based superconductors (FeSe$_{1-x}$Te$_x$)
- T_c reported up to 37 K
- Remain superconducting in high magnetic fields (>45 T)

New custom precursors for Se, Te (J. Schlueter, S. Sullivan ANL)
- (Et$_3$Si)$_2$Te / (Et$_3$Si)$_2$Se
- (tBuMe$_2$Si)$_2$Te / (tBuMe$_2$Si)$_2$Se

$$(R_3Si)_2Te(g) + MCl_2(g) \rightarrow MTe(s) + 2R_3SiCl(g)$$
Summary

- Growth of single-phase hexagonal-MoN at 450°C
- Demonstrated ~2x increase in T_c in MoN with intermittent Zn dose ($\text{MoCl}_5 + \text{Zn} + \text{NH}_3$)
- Optimized growth of $\text{Nb}_{1-x}\text{Ti}_x\text{N}$ to achieve superconducting $T_c = 14$ K, 40% higher than any other ALD film and ~5 K higher than Nb
- Demonstrated successful ALD growth of $\text{Nb}_{1-x}\text{Ti}_x\text{N}/\text{AlN}$ S-I multilayers on flat substrates (Si, SiO₂, Sapphire, Nb)
- Assembly of new UHV ALD system for coating 1-cell ILC cavities
- New precursors for Fe-based superconductors ($\text{FeSe}_{1-x}\text{Te}_x$)
- Plasma-enhanced ALD system now online and in use
Thank you for your attention