

Atomic layer deposition of superconducting films and multilayers for SRF

Jeffrey A. Klug¹, Thomas Proslier¹, Nicholas G. Becker^{1,2}, Helmut Claus¹, Jeffrey W. Elam³, James Norem⁴, John F. Zasadzinski², and Michael J. Pellin¹

1 Materials Science Division, Argonne National Laboratory 2 Department of Physics, Illinois Institute of Technology 3 Energy Systems Division, Argonne National Laboratory 4 High Energy Physics Division, Argonne National Laboratory

* This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357 and by the American Recovery and Reinvestment Act (ARRA) through the US Department of Energy, Office of High Energy Physics Department of Science.

SRF 2011, Chicago, IL

Multilayer thin films for SRF

Superconductor-Insulator multilayer [Gurevich, *Appl. Phys. Lett.* **88**, 012511 (2006)]

Potential path to high E_{acc} and high Q_0

Atomic layer deposition (ALD)

A thin film synthesis process based on sequential, self-limiting surface reactions between vapors of chemical precursors and a solid surface to deposit films in an atomic layer-by-layer manner.

Advantages:

- Atomic-level control of thickness and composition
- Smooth, continuous, pinhole-free coatings on large area substrates
- No line-of-sight limits \rightarrow excellent conformality over complex shaped surfaces

Coat inside Nb SRF cavity with precise, layered structure → ALD

ALD thin film materials

- \bullet Oxide
- Nitride

 \blacktriangle

- Phosphide/Arsenide
- · Sulphide/Selenide/Telluride
- Element
- Carbide
- Fluoride
- Dopant

ALD superconductors?

- \bullet Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride
- Element • Carbide
- Fluoride
- Dopant

Except in one paper, superconductivity has been ignored...

Reported $T_c = 10$ K for NbN [Hiltunen, *et al.*, *Thin Solid Films* **166**, 149 (1988)]

Superconductors by ALD

Goal for SRF is a material with a T_{c} higher than bulk Nb (9.2 K)

- **Niobium Silicide: NbSi**
	- $-$ NbF₅ + Si₂H₆
	- $-$ NbF₅ + SiH₄
- **Niobium Carbide: NbC**
	- $-$ NbF₅ + Al(CH₃)₃
	- $-$ NbCl₅ + Al(CH₃)₃
- Niobium Carbo-Nitride: $Nbc_{1}N_c$
	- $-$ Al(CH₃)₃ + NbF₅ + NH₃
	- $-$ Al(CH₃)₃ + NbCl₅ + NH₃
- **Nolybdenum Nitride: MoN**
	- $-$ MoCl₅ + NH₃
	- $-$ MoCl₅ + Zn + NH₃
- Niobium Titanium Nitride: $Nb_{1-x}Ti_xN$
	- $-$ (NbF₅, TiCl₄) + NH₃
	- $-$ (NbCl₅, TiCl₄) + Zn + NH₃
- \blacksquare Iron Selenide: FeSe_x
	- $-$ FeCl₃ + Se(Et₃Si)₂

Superconductors by ALD

Goal for SRF is a material with a T_{c} higher than bulk Nb (9.2 K)

- **Niobium Silicide: NbSi**
	- $-$ NbF₅ + Si₂H₆
	- $-$ NbF₅ + SiH₄
- **Niobium Carbide: NbC**
	- $-$ NbF₅ + Al(CH₃)₃
	- $-$ NbCl₅ + Al(CH₃)₃
- Niobium Carbo-Nitride: $Nbc_{1}N_c$
	- $-$ Al(CH₃)₃ + NbF₅ + NH₃
	- $-$ Al(CH₃)₃ + NbCl₅ + NH₃
- **Nolybdenum Nitride: MoN**
	- $-$ MoCl₅ + NH₃
	- $-$ MoCl₅ + Zn + NH₃
- Niobium Titanium Nitride: $Nb_{1-x}Ti_xN$
	- $-$ (NbF₅, TiCl₄) + NH₃
	- $-$ (NbCl₅, TiCl₄) + Zn + NH₃
- \blacksquare Iron Selenide: FeSe_x
	- $-$ FeCl₃ + Se(Et₃Si)₂

Viscous flow ALD reactor

Key features:

- Inconel 600 reactor tube (superior corrosion resistance)
	- Halide precursors (NbCl₅, TiCl₄, etc.)
- **All-welded precursor inlet manifold** (reduced sites for potential leaks)
	- Oxygen contamination in nitride films

Thin film characterization

- X-ray photoemission spectroscopy (XPS)
- **K**-ray reflectivity (XRR)
- X-ray diffraction (XRD)
- Synchrotron grazing-incidence x-ray diffraction (GIXRD)
- **Scanning electron microscopy (SEM)**
- **Transmission electron microscopy (TEM)**
- DC electrical transport (down to 1.6 K)
- SQUID magnetometry
- Atom probe tomography (APT) [Seidman, NU]
- **Rutherford backscattering spectroscopy (RBS) [Evans Analytical]**

Molybdenum nitride: MoN

Effects of intermittent Zn pulse

- Chemistry: $\text{MoCl}_5 + \text{NH}_3$ versus $\text{MoCl}_5 + \text{Zn} + \text{NH}_3$ at 450°C
- **Hexagonal MoN in both cases, higher density & change in texture with Zn**

Klug - DOE-HEP Review | Work supported by ARRA funds: 5003A

MoN: Superconducting T^c (SQUID)

Klug - DOE-HEP Review | Work supported by ARRA funds: 5003A

11

Niobium titanium nitride: Nb1-xTixN

- Chemistry: $(NbCl₅:TiCl₄) + Zn + NH₃$ at 450°C, 500°C
- Can vary Ti content with $NbCl_{5}:TiCl_{4}$ ratio (1:2 ~ 20% TiN)
	- Cubic $δ$ phase in all films

With increasing TiN

- **Peaks shift to higher angle**
- Density decreases
	- -7.2 g/cm³ (1:0)
	- -5.7 g/cm³ (1:4)
- RT resistivity decreases
	- 380 µΩ-cm (1:0)
	- $-130 \mu\Omega$ -cm (1:4)

Impurity content: 0.05 atom % Cl

Are they good superconductors?

Optimized growth of Nb1-xTixN

- Achieved superconducting T_c=14 K, **40% higher than any other ALD film**
- Nearly 5 K higher than Nb

A

Nb1-xTixN-based superconductor-insulator structures

Aluminum nitride: AlN

- Oxygen-free insulator, stable interface with Nb(Ti)N
- Good thermal conductivity (285 W/m-K)
- **Similar structure to Nb(Ti)N**
	- 0.27% mismatch between in-plane spacing of (0001)-oriented AlN and (111)-oriented NbN
- **Can be grown with AICI**₃ and NH₃ at same temperature as Nb(Ti)N
	- No thermal cycling between deposition steps
	- ALD previously demonstrated [K.-E. Elers, et al. *J. de Phys. IV* **5** (1995)]
- **NbN/AIN multilayers grown previously by sputtering**
	- $-$ Enhanced $J_{\rm c}$ at high fields [J.M. Murduck, et al. *Appl. Phys. Lett.* **62** (1988)]
	- Model system for vortex matter in HTS [E.S. Sadki, et al. *Phys. Rev. Lett.* **85** (2000)]

Nb1-xTixN / AlN: X-ray reflectivity

- Density ~5% higher with AlN
- Roughness ~2x higher with AlN
- Change in thickness/cycles (difference in nucleation delay)

Nb1-xTixN / AlN multilayers

- 40 nm $Nb_{0.8}Ti_{0.2}N$ / 15 nm AIN (single bilayer and 2x stack)
- 80 nm $Nb_{0.8}Ti_{0.2}N$ / 30 nm AIN (single bilayer and 2x stack)
	- $-$ Quartz, Si(001), 100 nm SiO₂/Si(001), 30 nm Nb/Sapphire, and cavity-grade Nb

Optimized Nb1-xTixN/AlN ALD growth process (T^c = 14 K) is now ready for coating Nb SRF cavities

 Will enable testing the effects of S-I multilayer on cavity performance

Scaling ALD to coat cavities

15.43"

New ALD system currently being assembled

- Clean room 100 environment
- Up to 650°C in UHV (10e-8 Torr)
- *In situ* processing
- Accommodate single-cell ILC cavities

 $4.28''$

 $4.5''$

 $\overline{}$ $8"$ $17"$

Fe-based superconductors: Initial studies of FeSe^x

Promising new Fe-based superconductors (FeSe1-xTe^x)

- \blacksquare T_c reported up to 37 K
- Remain superconducting in high magnetic fields (>45 T)

New custom precursors for Se, Te

(J. Schlueter, S. Sullivan ANL)

- (Et, Si) , Te / (Et, Si) , Se
- (^tBuMe₂Si)₂Te / (^tBuMe₂Si)₂Se

$(R_3Si)_2Te(g) + MCl_2(g) \rightarrow MTe(s) + 2R_3SiCl(g)$

Summary

- Growth of single-phase hexagonal-MoN at 450°C
- **Demonstrated** \sim 2x increase in T_c in MoN with intermittent Zn dose $(MoCl₅ + Zn + NH₃)$
- Optimized growth of $Nb_{1-x}Ti_xN$ to achieve superconducting $T_c = 14$ K, 40% higher than any other ALD film and ~5 K higher than Nb
- **Demonstrated successful ALD growth of** $Nb_{1-x}Ti_xN/AIN S-I$ **multilayers on** flat substrates (Si, SiO $_2$, Sapphire, Nb)
- Assembly of new UHV ALD system for coating 1-cell ILC cavities
- New precursors for Fe-based superconductors (FeSe_{1-x}Te_x)
- **Plasma-enhanced ALD system now online and in use**

Thank you for your attention

Klug | SRF2011 Hot Topic: Medium Field Q-slope and Paths to high-Q operation | 26 July 2011

 \blacktriangle