

Atomic layer deposition of superconducting films and multilayers for SRF

<u>Jeffrey A. Klug</u>¹, Thomas Proslier¹, Nicholas G. Becker^{1,2}, Helmut Claus¹, Jeffrey W. Elam³, James Norem⁴, John F. Zasadzinski², and Michael J. Pellin¹

Materials Science Division, Argonne National Laboratory
Department of Physics, Illinois Institute of Technology
Energy Systems Division, Argonne National Laboratory
High Energy Physics Division, Argonne National Laboratory

* This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357 and by the American Recovery and Reinvestment Act (ARRA) through the US Department of Energy, Office of High Energy Physics Department of Science.

SRF 2011, Chicago, IL

Multilayer thin films for SRF

Superconductor-Insulator multilayer [Gurevich, Appl. Phys. Lett. 88, 012511 (2006)]

Potential path to high E_{acc} and high Q₀

Atomic layer deposition (ALD)

A thin film synthesis process based on sequential, self-limiting surface reactions between vapors of chemical precursors and a solid surface to deposit films in an atomic layer-by-layer manner.

Advantages:

- Atomic-level control of thickness and composition
- Smooth, continuous, pinhole-free coatings on large area substrates
- No line-of-sight limits → excellent conformality over complex shaped surfaces

Coat inside Nb SRF cavity with precise, layered structure \rightarrow ALD

ALD thin film materials

- Oxide
- Nitride

- Phosphide/Arsenide
- Sulphide/Selenide/Telluride

- Element
- Carbide
- Fluoride
- Dopant

ALD superconductors?

- Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride

- Element • Carbide
- Carbide
- Fluoride
- Dopant

Except in one paper, superconductivity has been ignored...

Reported T_c = 10 K for NbN [Hiltunen, et al., Thin Solid Films 166, 149 (1988)]

Superconductors by ALD

Goal for SRF is a material with a T_c higher than bulk Nb (9.2 K)

- Niobium Silicide: NbSi
 - NbF₅ + Si₂H₆
 - NbF₅ + SiH₄
- Niobium Carbide: NbC
 - NbF₅ + Al(CH₃)₃
 - NbCl₅ + Al(CH₃)₃
- Niobium Carbo-Nitride: NbC_{1-x}N_x
 - $\text{AI(CH}_3)_3 + \text{NbF}_5 + \text{NH}_3$
 - $\mathsf{AI}(\mathsf{CH}_3)_3 + \mathsf{NbCI}_5 + \mathsf{NH}_3$
- Molybdenum Nitride: MoN
 - MoCl₅ + NH₃
 - MoCl₅ + Zn + NH₃
- Niobium Titanium Nitride: Nb_{1-x}Ti_xN
 - (NbF₅, TiCl₄) + NH₃
 - (NbCl₅, TiCl₄) + Zn + NH₃
- Iron Selenide: FeSe_x
 - FeCl₃ + Se(Et₃Si)₂

Superconductors by ALD

Goal for SRF is a material with a T_c higher than bulk Nb (9.2 K)

- Niobium Silicide: NbSi
 - NbF₅ + Si₂H₆
 - NbF₅ + SiH₄
- Niobium Carbide: NbC
 - NbF₅ + Al(CH₃)₃
 - NbCl₅ + Al(CH₃)₃
- Niobium Carbo-Nitride: NbC_{1-x}N_x
 - $AI(CH_3)_3 + NbF_5 + NH_3$
 - $AI(CH_3)_3 + NbCI_5 + NH_3$
- Molybdenum Nitride: MoN
 - MoCl₅ + NH₃
 - MoCl₅ + Zn + NH₃
- Niobium Titanium Nitride: Nb_{1-x}Ti_xN
 - (NbF₅, TiCl₄) + NH₃
 - (NbCl₅, TiCl₄) + Zn + NH₃
- Iron Selenide: FeSe_x
 - FeCl₃ + Se(Et₃Si)₂

Viscous flow ALD reactor

Key features:

- Inconel 600 reactor tube (superior corrosion resistance)
 - Halide precursors (NbCl₅, TiCl₄, etc.)
- All-welded precursor inlet manifold (reduced sites for potential leaks)
 - Oxygen contamination in nitride films

Thin film characterization

- X-ray photoemission spectroscopy (XPS)
- X-ray reflectivity (XRR)
- X-ray diffraction (XRD)
- Synchrotron grazing-incidence x-ray diffraction (GIXRD)
- Scanning electron microscopy (SEM)
- Transmission electron microscopy (TEM)
- DC electrical transport (down to 1.6 K)
- SQUID magnetometry
- Atom probe tomography (APT) [Seidman, NU]
- Rutherford backscattering spectroscopy (RBS) [Evans Analytical]

Molybdenum nitride: MoN

Effects of intermittent Zn pulse

- Chemistry: MoCl₅ + NH₃ versus MoCl₅ + Zn + NH₃ at 450°C
- Hexagonal MoN in both cases, higher density & change in texture with Zn

Klug - DOE-HEP Review | Work supported by ARRA funds: 5003A

MoN: Superconducting T_c (SQUID)

Klug - DOE-HEP Review | Work supported by ARRA funds: 5003A

11

Niobium titanium nitride: Nb_{1-x}Ti_xN

- Chemistry: $(NbCl_5:TiCl_4) + Zn + NH_3$ at 450°C, 500°C
- Can vary Ti content with NbCl_{5:}TiCl₄ ratio (1:2 ~ 20% TiN)
 - Cubic δ phase in all films

With increasing TiN

- Peaks shift to higher angle
- Density decreases
 - 7.2 g/cm³ (1:0)
 - 5.7 g/cm³ (1:4)
- RT resistivity decreases
 - 380 μΩ-cm (1:0)
 - 130 μΩ-cm (1:4)

Impurity content: 0.05 atom % CI

Are they good superconductors?

Optimized growth of Nb_{1-x}**Ti**_x**N**

- Achieved superconducting T_c=14 K, **40% higher than any other ALD film**
- Nearly 5 K higher than Nb

Nb_{1-x}Ti_xN-based superconductor-insulator structures

Aluminum nitride: AIN

- Oxygen-free insulator, stable interface with Nb(Ti)N
- Good thermal conductivity (285 W/m-K)
- Similar structure to Nb(Ti)N
 - 0.27% mismatch between in-plane spacing of (0001)-oriented AIN and (111)-oriented NbN
- Can be grown with AICl₃ and NH₃ at same temperature as Nb(Ti)N
 - No thermal cycling between deposition steps
 - ALD previously demonstrated [K.-E. Elers, et al. J. de Phys. IV 5 (1995)]
- NbN/AIN multilayers grown previously by sputtering
 - Enhanced J_c at high fields [J.M. Murduck, et al. Appl. Phys. Lett. 62 (1988)]
 - Model system for vortex matter in HTS [E.S. Sadki, et al. Phys. Rev. Lett. 85 (2000)]

Nb_{1-x}Ti_xN / AIN: X-ray reflectivity

- Density ~5% higher with AIN
- Roughness ~2x higher with AIN
- Change in thickness/cycles (difference in nucleation delay)

Nb_{1-x}Ti_xN / AIN multilayers

- 40 nm Nb_{0.8}Ti_{0.2}N / 15 nm AIN (single bilayer and 2x stack)
- 80 nm Nb_{0.8}Ti_{0.2}N / 30 nm AIN (single bilayer and 2x stack)
 - Quartz, Si(001), 100 nm SiO₂/Si(001), 30 nm Nb/Sapphire, and cavity-grade Nb

Optimized $Nb_{1-x}Ti_xN/AIN$ ALD growth process ($T_c = 14$ K) is now ready for coating Nb SRF cavities

 Will enable testing the effects of S-I multilayer on cavity performance

Scaling ALD to coat cavities

New ALD system currently being assembled

- Clean room 100 environment
- Up to 650°C in UHV (10e-8 Torr)
- In situ processing
- Accommodate single-cell ILC cavities

Fe-based superconductors: Initial studies of FeSe_x

Promising new Fe-based superconductors (FeSe_{1-x}Te_x)

- T_c reported up to 37 K
- Remain superconducting in high magnetic fields (>45 T)

New custom precursors for Se, Te

(J. Schlueter, S. Sullivan ANL)

- (Et₃Si)₂Te / (Et₃Si)₂Se
- (^tBuMe₂Si)₂Te / (^tBuMe₂Si)₂Se

$(R_3Si)_2Te(g) + MCl_2(g) \rightarrow MTe(s) + 2R_3SiCl(g)$

Summary

- Growth of single-phase hexagonal-MoN at 450°C
- Demonstrated ~2x increase in T_c in MoN with intermittent Zn dose (MoCl₅ + Zn + NH₃)
- Optimized growth of $Nb_{1-x}Ti_{x}N$ to achieve superconducting $T_{c} = 14$ K, 40% higher than any other ALD film and ~5 K higher than Nb
- Demonstrated successful ALD growth of Nb_{1-x}Ti_xN/AIN S-I multilayers on flat substrates (Si, SiO₂, Sapphire, Nb)
- Assembly of new UHV ALD system for coating 1-cell ILC cavities
- New precursors for Fe-based superconductors (FeSe_{1-x}Te_x)
- Plasma-enhanced ALD system now online and in use

Thank you for your attention

Klug | SRF2011 Hot Topic: Medium Field Q-slope and Paths to high-Q operation | 26 July 2011